
User Manual "Damped Oscillatory Wave Tester "

MIG-OS-OS1

Waveforms: damped oscillatory 100 kHz, 1MHz

MIG0603OSI

Waveforms: damped oscillatory 100 kHz, 1MHz, surge 1.2/50, 8/20 µs, 1.2/50 µs 0.5 J

MIG-OS-OS1 4UH and MIG0603OSI 8 UH

Title: Date: General Manager: Service Manager: Revised: MIG - Modular Impulse Generator 16.05.99 M. Lutz R. Henz **18. December 2010**

1 MHz, 100 kHz, SURGE 1.2/50, 8/20 μs, 1.2/50 μs 0.5J MIG - Modular Impulse Generator

This user manual provides information necessary for operation of the test equipment.

Throughout the users manual, standard references are used as an aid to understanding only.

The relevant standard(s) **must** be obtained and used in conjunction with this users manual

Declaration of Conformity

See sheets attached at the end of this user manual:

- Declaration of conformity to product standards
- Declaration of conformity to low voltage directive
- Declaration of conformity to EMC directive

Contents:

1	DE	SCRIPTION	8
	1.1 1.1.	The different application of the MIG0603-Oxx 1 Voltage "Damped Oscillatory Wave Tester	8 8
	1.1.		9
	1.1.		12
	1.2	Combined MIG testers, Special MIG testers	13
	1.2.	1 Overview about the "Damped Oscillatory Testers	13
	1.3 1.3.	MIG generator range 1 Standard MIG Tester "Insulation, Energy, CWG	14 14
	1.3.		14
	1.3.		14
	1.3.		15
	1.3.	5 Combination wave tester CWG	15
	1.4 1.4.	Technical data 1 Voltage: 1 MHz, 100 kHz Damped Oscillatory Wave	17 17
	1.4.		19
	1.4.		20
	1.4.		21
	1.4.		21
	1.5	Mechanical dimensions	23
	1.5.		23
	1.5.		23
	1.6	Power supply inputs	23
	1.7	Accessories, diemensions	24
	1.7.		24
	1.7.	2 Standard accessories	25
2	SA	FETY	27
	2.1	Safety standards	27
	2.2	Climatic Conditions	27
	2.3	Precautionary measure during use	28
	2.4	Electromagnetic Compatibility	28
	2.5	The manual is an integral part of the equipment. Refer to the manual.	28
3	ME	CHANICAL STRUCTURE	29
	3.1	General	29
	3.2	EMC PARTNER High Voltage Module	30
	3.3	Measuring Circuits CWG	30

4	СО		31
	4.1 4.1.	Front panel of the MIG0603-Oxx 1 Control part	31 32
	4.2	Rear Panel of the MIG0603-Oxx	35
5	PR	EPARATION FOR OPERATION	39
	5.1	Attention, Refer to Manual	39
	5.2	Operators and Service Personnel	39
	5.3 5.3. 5.3. 5.3.	2 Power source check	39 39 40 40
	5.4 5.4. 5.4. 5.4.	2 Test set-up damped oscillatory wave	41 41 42 42
6	ΤE	STING WITH THE MIG0603-OXX	43
	6.1 6.1. 6.1. 6.1. 6.1. 6.1.	 Protocol and beeper possibilities Damped oscillatory wave test Combination Wave Test 	43 45 46 47 47 48
	6.2 6.2. 6.2. 6.2.	2 "Main" Setting of nominal values	49 49 50 55
	6.3 6.3. 6.3.		58 58 59
7	MA	INTENANCE AND SERVICING	61
	7.1	Maintenance	61
	7.2 7.2. 7.2.		61 61 61
	7.3	Verification of the MIG0603OMX at EMC PARTNER	62
8	WH 8.1. 8.1. 8.1.	2 Failure messages based on error at the generator "Generator malfunction"	63 63 64 65

8.2 Service; Repairs	66
8.3 Spare parts list	66
8.4 Service department of EMC PARTNER AG	66
9 PUTTING OUT OF OPERATION	67
10 PACKAGING AND TRANSPORT	69
10.1 Packaging	69
10.2 Transport	69
11 RECYCLING / DISPOSAL	71
11.1 Information for dismantling	71
11.2 Parts which can be recycled	71
11.3 Parts which can not be recycled	71
12 ACCESSORIES	73
12.1 Accessories to MIGxxxOxx System 12.1.1 Accessories to MIG-OS-OS, MIG0603OSI Testers	73
13 SERIAL REMOTE CONTROL	75
13.1 General 13.1.1 Technical Data of the RS 232C serial port	75
13.2 Organisation of MIG Remote-Control Commands	5 76
13.3Syntax of the Commands13.3.1Separation signs:13.3.2Commands Format:	76 76 76
13.4Setup Commands:13.4.1Inquire Commands13.4.2Failure messages:	76 77 77
13.5 Remote Control Command set	78
13.6 Overview MIG Commands	90
13.7Software "GENECS" for MIG Remote Control13.7.1Setup GENECS13.7.2GENECS Windows13.7.3GENECS Library13.7.4GENECS Protocol possibilities13.7.5GENECS Log File13.7.6GENECS Preferences	92 92 92 92 93 93 94 95

14 APP	ENDIX AND CORRECTION	97
14.1 A	Appendix	97
	Definition of the wave form combination	97
14.1.2	Definition of the wave form energy ring wave	97
14.1.3	Definition of the wave form 10/700 μs	97
14.2 (Correction	99
14.2.1	Declaration of conformity to the EMC directive 89/336/EEC	99
14.2.2	Declaration of conformity to the LV directive 93/68/EEC	99
14.2.3		99
15 GLC	SSARY	101
16 INDI	EX	103

1 Description

1.1 The different application of the MIG0603-Oxx

1.1.1 Voltage "Damped Oscillatory Wave Tester

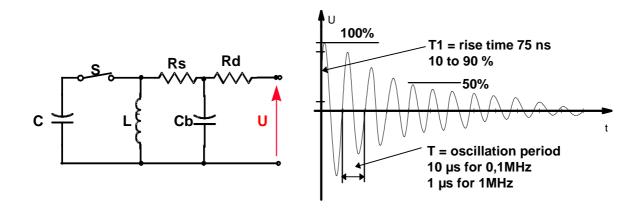
Introduction: "

The damped oscillatory wave is a typical oscillatory transient, induced in low voltage supply of measuring cables due to the switching of three phase electrical networks in HV/N`MV open air station.

In electrical stations, the opening and closing operations of HV isolators give rise to sharp front-wave transients, with time of the order of some tens of nanoseconds. The voltage front-wave has an evolution that includes reflection, due to mismatching of the characteristic impedance of HV circuits involved. In this respect, the resulting transient voltage and current in HV busbars are characterised by a fundamental oscillation frequency that depends on the length of the circuit and on the propagation time.

The oscillation frequency ranges from about 100 kHz to a few megahertz, depending on the influence of the parameter mentioned above and the length of the busbars, which may vary from some tens of meters to hundreds of meters. In this respect, the oscillation frequency of 1 MHz may considered respective of most situations, but 100 kHz has been considered appropriate for large HV substations.

The repetition frequency is variable and a function of the distance between the switching contacts. The minimum repetition frequency in respect of each phase, is twice the power frequency. The repetition rates selected, 40/s and 400/s represents therefore a compromise, taking into account the different duration of the phenomena, the suitability of the different frequencies considered and the problem related to the energy to which the circuits under test are subjected.


Impedance of the test generator

For testing the input/output ports of measuring relays, the selection of the 200 Ohm impedance is a compromise. This takes into account that the characteristic impedance of cables used for this purpose (twisted pairs) has a value ranging from 120 to 150 Ohm in the frequency range above 100 kHz and for a length of the order of 100 m. ANSI/IEEE C37.90.1 document a 150 Ω impedance, frequency 1 to 1.5 MHz are specified and 50% damping must be after 6 µs.

Relevant standards:

IEC 60255-4, IEC 6055-22-1, IEC 61000-4-18, IEC60834-1, VDE 435 Teil 303, ANSI/IEEE C37.90.1

Damped oscillatory wave Generator Voltage at no load

1.1.2 "CWG Combination Wave Generator"

Introduction, "Combination wave test"

Long wires to sensors or supplies are very often connected to the inputs and outputs of industrial electronic equipment. The most frequent damages are overvoltages, caused either by switching actions in the equipment itself or by atmospheric discharges such as lightnings. To avoid the destruction of electronic equipment by overvoltages, protection elements and circuits are placed at the inputs and outputs of the equipment ports.

Consumer electronic devices such as antenna ports on television set, telephones, faxes, can also be influenced by atmospheric discharges. Mostly the disturbances are tolerable because of their single event. To protect such equipment from damages, protection elements and circuits are installed. Tests must be carried out to determine whether these protective circuits are really effective.

The following aspects of surge testing electronic systems are relevant:

- Testing for failure modes that involve flashover are influenced by the surge current that would flow after flashover.
- The surge let-through of a protective device depends on the applied voltage front.
- The response of a crowbar-type device, subjected to an intended current test, will be influenced by the voltage front applied by the generator, that senses a high-impedance test piece, until operation of the crowbar.

Therefore the generator must be capable to generate a waveform 1,2/50 μ s or a current waveform of 8/20 μ s at clamping status of the protection circuit. Traditionally, the 1,2/50 μ s voltage waveform was used for testing the basic impulse level of insulation, which is approximately an open circuit until the insulation fails. The 8/20 μ s current waveform was used to inject large currents into surge protective devices. Since both the open circuit voltage and short circuit current are different aspects of the same phenomenon, such as an overstress caused by lightning, it was necessary to combine them to a single waveform when the load is not known in advance.

The combination wave generator has been defined first for Electro Magnetic Compatibility tests up to 4 kV in the document IEC 61000-4-5 or IEEE 587. EMC test must be carried out on powered equipment. There are several reasons for performing powered test:

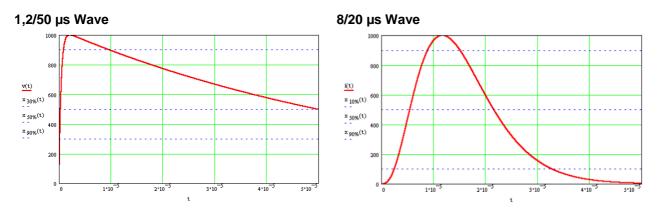
- From a standpoint of a good practice, it is best to perform laboratory tests in a manner that most closely simulates the actual service environment.
- It is the applied ac that furnishes the energy following the surge, that can establish sustained arcing faults, tracking on insulation, destruction of printed wiring, and so on
- The application of normal ac power generally rises the EUT to an initial level of stress. Without power current following a surge-induced flashover, the resulting defect might not be detected.

The loading by the EUT might cause appreciable discrepancy between the preset nominal voltage opencircuit voltage or short circuit current and the actual voltage across or current in the load. This effect is the reason why surge parameters are not specified with the EUT connected.

Equations for standards waveform:

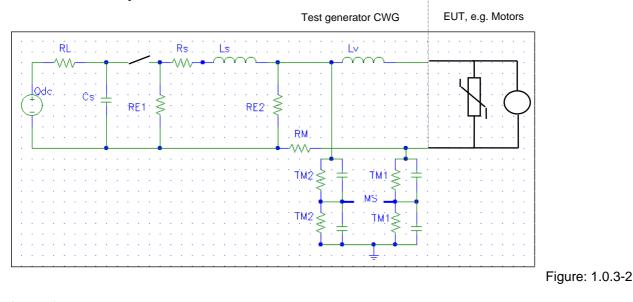
1,2/50 µs Wave

 $V(t) = AVp(1 - exp\frac{-t}{\tau 1})exp(\frac{-t}{\tau 2})$ $I(t) = AIpt^{3}exp(\frac{-t}{\tau})$


8/20 µs Wave

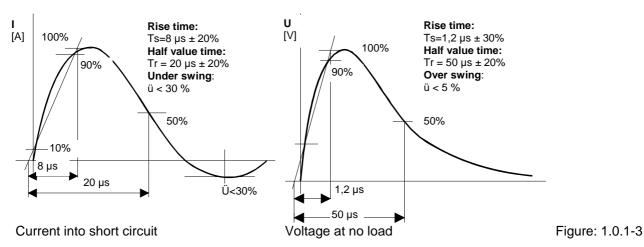
In all the equations above:

t = time


Vp = maximum or peak value of the open-circuit voltage lp = peak value of the short circuit current

Calculated waveform with the equation above:

The circuit diagram of a generator capable to generate the two waveform above is showed below.


Generators to carry out combination wave tests

Legend: RL Charging resistor Cs Impulse capacitor High voltage switch S Serial resistor RF1 Discharge resistor Inductance of the generator Rs 1s RM Shunt RE2 Discharge resistor TM1 Divider Inductance of the connection MS Measurement equipment TM2 Divider Lv

A dc source charges the capacitors within the different modules via the charging resistors. Closing the switch S discharge the capacitors into the parallel branches RE1, RE2 and EUT. When the EUT has a high impedance the CWG generates a voltage rise defined by the serial inductance Ls and by the parallel resistor RE2. The half value time is determined by Cs and the both RE1 // RE2. When the EUT has a low impedance the generated current is determined by the elements Cs, Ls, Rs and the EUT.

The current and voltage waveforms are defined in IEC 61000-4-5 as follows:

Wave shapes and tolerances

The waveforms are verified in open circuit (voc)and short circuit (isc). No load limitation exists, because for different load impedance (EUT) the waveforms are within the open circuit voltage waveform and the short circuit current waveform.

Superimposing surge onto power supply

To superimpose the surge pulses onto power line supply, coupling filters must be used. The aim of the coupling filter is to couple the generated surge waveform without deformation of rise time, half value time and amplitude onto the operated EUT and to protect the auxiliary equipment from surge pulses.

When surges are superimposed onto power supply lines, the synchronisation angle must be chosen to correspond to the half wave of the power supply. The picture below shows that pseudo tests can be carried out, when the synchronisation angle is not correctly selected. When a positive surge is superimposed at 270°, the clamping voltage of the varistor is not reached and no real test is carried out.

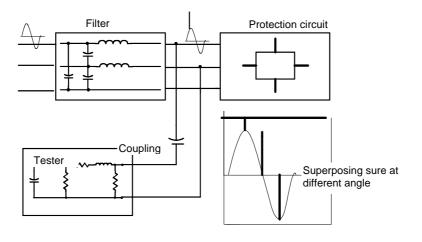
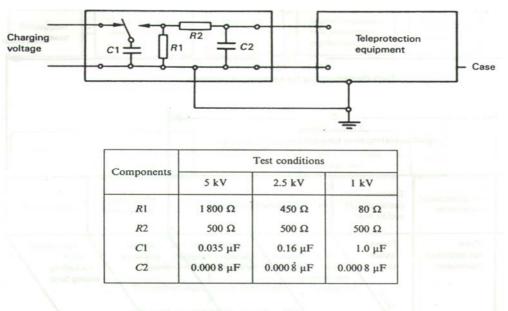


Figure: 1.0.1-4


1.1.3 Voltage tests with 1.2/50 μs 0.5 J and 500 Ω

Impulse withstand test 1.2/50 µs

The classic insulation withstand test is carried out with a 1.2/50 µs waveform. This waveform must remain within tolerances, when applied to device under test. As long as the devices under test are resistive, capacitive or inductive the 1.2/50µs wave shape can be kept within the tolerances. With protection circuits involved, it is no longer possible to keep the waveform within tolerances. As a consequence in IEC 255-5 a generator and a test procedure are specified for insulation withstand tests based on a defined source energy and impedance. The waveform is verified without the device under test. During tests the waveform must not be monitored.

Impedance of the test generator

The 500 ohm serial resistor of the generator defines the source impedance and limits the current through the device under test. The maximum energy of the generator must be 0.5 Joule \pm 10% for each test level.

Circuit of the generator as defined in IEC 834-1, (IEC 255-4)

FIG. 5. — Circuit for impulse generator.

Relevant standards: IEC 255-5, 834-1 EN 61036, VDE 435 Teil 303

Test voltage	Energy	Generator- impedance	Impulse Capacitor	Voltage waveform oc	Current waveform sc
0.5 kV	0.5 J	500 Ohm	4.0 µF	0.5kV 1.2/50us	1A 1.2/50us
1 kV	0.5 J	500 Ohm	1.0 µF	1kV 1.2/50us	2A 1.2/40us
3 kV	0.5 J	500 Ohm	110 nF	3kV 1.2/50us	6A 1.2/25us
5 kV	0.5 J	500 Ohm	40 nF	5kV 1.2/50us	10A 1.2/10us

1.2 Combined MIG testers, Special MIG testers

1.2.1 Overview about the "Damped Oscillatory Testers

1.2.1.1 MIG Voltage Oscillatory Wave Testers

Pos.	Product No.	Туре	Short Description	Delivery
97	MIG1A103C	MIG-OS-OS1	IEC 255-4, ANSI C37.90.1 and 22 or IEC 61000-4- 18 section "damped oscillatory wave" 1MHz and 100kHz up to 3kV	1 month
99	MIG1A102C	MIG0603OSI	1MHz and 100kHz up to 3kV; CWG 6kV, 3kA, 1.2/50µs 0.5J up to 6kV, IEC 61000-4-18, 61000-4-5 without CDN, 60255-4 and -5	1 month

1.2.1.2 Accessory to MIG Voltage Oscillatory Wave Testers

Pos.	Product No.	Туре	Short Description	Delivery
100	MIG1A92C	CDN2000-06- 25	Three phase CDN with line voltages L to N 280V and L to L 415V, line current 25A per phase, manually coupling path selection for EFT, damped oscillatory and SURGE. Incl. accessories according to user manual	from stock
101	MIG1A352C	CDN2000-06- 25 OPTION 480V	Three phase CDN with line voltages L to N 280V and L to L 480V, line current 25A per phase, manually coupling path selection for EFT, damped oscillatory, SURGE and Ring Wave. Incl accessories according to user manual	1 month

Special generators on demand

1.3 MIG generator range

With the MIG current generators also other applications are possible like: measurement of earth impedance, impulse impedance of connectors, release of fault current switches, demagnetisation of magnetic metal, etc.

1.3.1 Standard MIG Tester "Insulation, Energy, CWG

MIG4803 Version: 1.16 SIN: 255 - 1.2/500 48kU/950A choose a shape SETUP and press enter MAIN	Insulation Application: voltage withstand tests	Waveform: 1,2/50 µs voltage Range: 0 to 100 kV:12, 24, 36, 48, 96 kV Standards: IEC 60060-1, -2, IEC 61010
MIG1248 Version: 1.16 SIN: 74 - 8/20us 12KA - 8/20us 48KA - 8/20us 24KA - 8/20 12KU 1.00hm - 8/20us 36KA - 8/20 12KU 0.50hm choose a shape SETUP and press enter MAIN	Energy Application: protection elements	Waveform: 8/20 µs current Range: 0 to 100 kA: 6, 12, 24, 48kA Standards: IEC 60060-1, -2, IEC 61643-1
MIG2412SPD Version: 1.16 SIN: 202 - 1.2258us 40ohm - 8/28us 20hm - CWG (coupl. L-N) - CWG (coupl. L-N) - CMG (coupl. L-N) SETUP and press enter MAIN	Combination Application: powered surge tests	Waveforms: 8/20 μs current 1,2/50 μs voltage Range: 0 to 24 kV, 0 to 12 kA Standard: IEC 61000-4-5

Other waveforms on demand.

1.3.2 MIG Clamping Voltage Tester

	Clamping Voltage Tester	Waveforms:	8/20 µs current
MIG0603CLV2 Version: 1.16 SIN: 89 - <1000U : <500 - <3000U : <500 - <1000U : <500 - <1000U : <500 - <1000U : <500 - <1000U : <500	Application:	Impedance:	10, 100, 1000 Ohm
- <3000 ; <5A - <10000 ; <50A - <1000 ; <5A - <3000 ; <50A - <5000 ; <5A SETUP and press enter MAIN	Varistors Vclp =<3000V	Range:	0,5 A up to 500 A
Scrore and press enter infinite		Standard:	IEC 61643-1

1.3.3 MIG for varistors and gaze arresters tests

MIG0624	Version: 1.16 SIN:	Surge Withstand Tester	Waveforms: 8/20 µs current
- 8/20us	60009 - 8/20us 240009		Impedance: 1, 0.5, 0.25 Ohm
- 8/2005 - 8/2005 SETUP	12000A - 8/20 6KU 1.00 18000A - 8/20 6KU 0.50 choose a shape and press enter MA	to $V_{olp} = 2000 V$	Range: 100 A up to 100'000A
			Standard: IEC 61643-1

MIG0624LP1 Version: 1.16 SIN: 82	Energy Tester	Waveforms: 10/1000 µs current
- 8/20us 6000A - 8/20us 24000A - 8/20us 12000A - 10/1000us 60A - 8/20us 18000A - 10/1000us 120A - 8/20us 18000A - 10/1000us 120A	Application: Energy test on Varistors	Range: 0,4 up to 750 A
SETUP and press enter MAIN		Standard: IEC

MIG0612K12 Version: 1.16 SIN: 25	Dual Surge Tester K12	Waveforms: i = 8/20, 10/700, 10/350 µs
- 10/700us 1200 - 10/700us 2400 - 10/350us 2400 - 10/350us 4800 - 8/20us 60000 - 8/20us 120000 choose a shape SETUP and press enter MAIN	Application: SURGE peak current test on Two electrode gaze arrestor	Range: 2 x i = 6'000, 120, 240 A 1 x i = 10'000, 240, 480 A
· · · · · ·		Standard ⁻ UIT K12

The "MIG0603K12 is a dual output surge current generator for testing protective elements like arresters, or Transzorbe diodes with different waveforms.

The dual output allows testing of three electrode elements . The current ranges are: for 8/20 μs up to 2x6'000 A, for 10/700 μs up to 2x120 A and for 10/350 μs up to 2x240 A.

For two electrode elements the outputs of the generator can be connected in parallel, to increase the current capability up to 240 A for $10/700 \ \mu$ s, 480 A for $10/350 \ \mu$ s and 12 kA for $8/20 \ \mu$ s.

The charging voltage up to 6300 V is sufficient for most of the protection elements, also for elements with relatively high clamping voltages.

The peak output voltage and current of the MIG are indicated on the front display. The two BNC monitor outputs (v,i) allow monitoring the voltage and current wave shapes by an oscilloscope connected onto.

1.3.4 MIG for X,Y, capacitor tests, CWG

MIG0603CAP Version: 1.16 SIN: 41	1,2/50 µs Capacitor Tester	Waveforms: 1,2/50 µs voltage	
CXX 3.9nF - 18nF (CXX 27nF - 3.9nF(CXX 12nF - 27nF (CXX 39nF - 12nF (CXX 18nF - 39nF (CXX 36nF - 12nF (CXX 18nF - 39nF (CXX 56nF choose a shape SETUP and press enter MAIN	Application: Insulation test on X, Y capacitors	Resistor: 3, 5, 7, 9, 13, 25, 27, 45, 62 Range: 0 up to 2 μF	
		Standard: IEC 60348-14	
MIG1803CAP Version: 1.16 SIN: 71	Flammability Tester	Range: capacitors up to 4 µF Vmax 6000V	
- EN 132400:1994 choose a shape SETUP and press enter MAIN	Application: flammability test on X, Y capacitors	capacitor up to 10 μF Vmax 4000V Standard: IEC 60348-14 Amd. 1	

1.3.5 Combination wave tester CWG

MIG0603IN3 Version: 1.16 SIN: 200	Different Surges	Waveforms: 1,2/50 µs, 8/20 µs CWG Options: Ring wave 0.5 µs, 100 kHz
- CWG 1.2/50 20mm - CCITT 15+250m - CWG 1.2/50 120hm - Ringwave 120hm - CCITT 15+00hm - Ringwave 300hm - CCITT 15+00hm - Ringwave 300hm - Choose a shape SETUP - and press enter - MAIN	Application: Household equipment, Telecommunication equipment	10/700 μs Range: 0.25 to 6.6 kV Coupling: for single phase included Standards: IEC 61000-4-5, IEC 61000-4-12, UIT K17

MIG0603IN

The MIG0603-IN can include up to three different waveforms like: CWG (1,2/50; 8/20); CCITT (10/700, 0,5/700) or ANSI, IEC 61000-4-12 ring wave 0,5/100kHz.

The MIG0603IN is a surge generator for simulation of indirect lightning on telecom and process and measurement lines. The relevant recommendations are CCITT K17 and IEC 61000-4-5.

The MIG0603IN is a hybrid generator with a voltage waveshape $1,2/50 \mu s$ at "no load" and a current waveform $8/20 \mu s$ at short circuit.

At 2 Ohm source impedance of the MIG0603IN, the voltage and current waveform can be guaranteed at the terminal of a 1 m connection cable. Instead of the cable connection a test cabinet can be placed on the top of the generator. The test cabinet is so designed that the cover can not be opened during the test. The green and red warning lamps are integrated in the test cabinet.

The peak output voltage and current of the MIG are indicated on the display. The two BNC monitor outputs allow monitoring the voltage and current wave shapes by an oscilloscope

MIG0603UL Version: 1.16 SIN: 3	Surge Between Two Lines	Waveform: 1,2/50 µs, 8/20 µs CWG Impedance: 2 and 12 Ohm
CNG 1.2/50us 2E CNG 1.2/50us 12E Choose a shape SETUP and press enter MAIN	Application: equipment, varistors	Ranges: current 3'000A or 500 A voltage 0 up to 6'000 V Coupling: between two line included
		Standards: UL 1449 August 15. 1996

MIG0606UL

The MIG0603UL is a Hybrid or combination generator with a voltage wave shape 1,2/50 μ s and a current wave shape 8/20 μ s. The combination waves are delivered by the MIG0603UL when applying the specified voltage waveform across an open circuit (oc) and the specified current waveform into a short circuit (sc). The exact waveform delivered is a function of the surge generator and the impedance to which the surge is applied.

The peak output voltage and current of the MIG are indicated on the front display. The two BNC monitor outputs (v,i) allow monitoring the voltage and current wave shapes by an oscilloscope connected onto. A coupling and de-coupling network is included to superimpose the SURGE on a two wire power supply.

Should you have test needs not listed above, contact an EMC PARTNER representative, direct EMC PARTNER AG in Laufen (CH) or visit our Web Site

www//emc-partner.com

www//emc-partner.ch

1.4 Technical data

1.4.1 Voltage: 1 MHz, 100 kHz Damped Oscillatory Wave

Waveform at no load:	No load = $R > 1k\Omega$	
Rise time	75ns	± 20%
Oscillation frequency	1 MHz	± 10%
Decay:	50% of the peak value between the 3^{rd} and 6^{th} periods	
Adjustable voltage range	200 up to 3000 V	
Settings	1 V steps	
Maximum voltage	3000 V	+10% -0%
Burst repetition rate	2/s to 400/s to 500/s	+10% -0%
Test duration	1s to 2s to 29999	+10% -0%
Polarity	pos. / neg. / alternate	
Random Pulses	on / off	
Burst Synchronisation	on / off	
Synchronisation Angle	0° to 360°	
Synchronisation Frequency	40Hz / 50Hz / 60Hz / 400Hz / 16.6Hz	

1.4.1.1 Voltage 1 MHz, 100 kHz IEC 61000-4-18

MIG0603OSI Circuit Parameter

Source impedance Umax. / Imax	200 Ω	± 10%

MIG0603OSI Control, Measurement

Trigger	auto or manual synchronisation	
Protocol	Peak values, Polarity, Trigger, Pulse Spacing, Burst Length, Repetition, Random Spikes, Burst Synchro	

Voltage 100 kHz, IEC 61000-4-18

Waveform at no load:	No load = $R > 1k\Omega$	
Rise time	75ns	± 20%
Oscillation frequency	100 kHz	± 10%
Decay:	50% of the peak value between the 3 rd and 6 th periods	
Adjustable voltage range	200 up to 3000 V	
Settings	1 V steps	
Maximum voltage	3000 V	+10% -0%
Burst repetition rate	2/s to 40/s to 50/s	+10% -0%
Test duration	1s to 2s to 29999	+10% -0%
Polarity	pos. / neg. / alternate	
Random Pulses	on / off	
Burst Synchronisation	on / off	
Synchronisation Angle	0° to 360°	
Synchronisation Frequency	40Hz / 50Hz / 60Hz / 400Hz / 16.6Hz	

MIG0603OSI Circuit Parameter

Source impedance Umax. / Imax	200 Ω	± 10%

MIG0603OSI Control, Measurement

Trigger	auto or manual synchronisation	
Protocol	Peak values, Polarity, Trigger, Pulse Spacing, Burst Length, Repetition, Random Spikes, Burst Synchro	

1.4.1.2 Voltage 1 MHz, ANSI/IEEE C37.901 (1989)

Waveform at no load:	No load = $R > 1k\Omega$	
Rise time	75ns	50 up to 100 ns
Oscillation frequency	1 up to 1.5 MHz	
Decay:	50% of the peak value after 6 µs	
Adjustable voltage range	200 up to 3000 V	
Settings	1 V steps	
Maximum voltage	3000 V	±10%
Burst repetition rate	2/s to 400/s to 500/s	+10% -0%
Test duration	1s to 2s to 29999	+10% -0%
Polarity	neg.	
Random Pulses	on / off	
Burst Synchronisation	on / off	
Synchronisation Angle	0° to 360°	
Synchronisation Frequency	40Hz / 50Hz / 60Hz / 400Hz / 16.6Hz	

MIG0603OSI Circuit Parameter

Source impedance Umax. / Imax	150 Ω	± 10%

MIG0603OSI Control, Measurement

Trigger	auto or manual synchronisation	
	Peak values, Polarity, Trigger, Pulse Spacing, Burst Length, Repetition, Random Spikes, Burst Synchro	

1.4.2	Combination	Wave	Generator	1,2/50; 8/20 µs
-------	-------------	------	-----------	-----------------

SURGE part		
Waveform at no load:	No load = $R > 100 \Omega$	
Rise time	1.2 µs	± 30%
Time to half value	50 µs	± 20%
Adjustable voltage range	250 V up to 6'300 V	
Settings	1 V steps	
Maximum voltage	6000 V	+10% -0%
Minimum Voltage	500 V	-10% +0%
Polarity	pos. / neg. / alternate	
Waveform at short circuit:	Short circuit R < 0,1 Ω	
Rise time	8 µs	± 20%
Time to half value	20 µs	± 20%
Underswing	< 30%	
Maximum current	3000 A	+10% -0%

MIG0603OSI Circuit Parameter

Impulse capacitance	10 µF	± 10%
Energy at max. charging voltage	220 Joule	
Source impedance Umax. / Imax.	2 Ω	± 10%

MIG0603OSI Control, Measurement

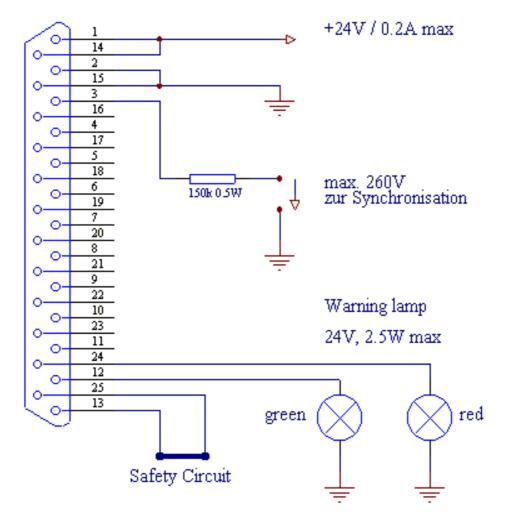
Minimum time between successive shots at maximum charging voltage	8 Seconds	1s steps
Impulse counter	1 up to 29'999	
Trigger	auto or manual synchronisation onto the power line voltage	
Ramps	- Voltage; - Polarity, - Synchronisation	
Voltage measurement:	Accuracy	± 3%
Peak value on Display	250 up to 6'600 V	
Voltage waveform BNC output (u)	10 V equals 6'000 V	
Current measurement:	Accuracy	± 3%
Peak value on Display	125 up to 3'300 A	
Current waveform BNC output (i)	10 V equals 3'000 A	
Protocol	Peak values, Polarity, Number of shots, Angle of Synchronisation	
Limits on peak current and peak voltage for "passed - failed". The measuring range equal of current and voltage peak values	stop testprotocolnext test	

1.4.3 Voltage tester 1,2/50, 0.5 J, 500 Ω

SURGE part

Waveform at no load:	No load = $R > 100 \Omega$	
Rise time	1.2 μs	± 30%
Time to half value	50 µs	± 20%
Adjustable voltage range	250 V up to 6'300 V	
Automatic range changing	250 v up to 575 V	4 µF
	575 up to 1150 V	1 µF
	1150 V up to 3450 V	110 nF
	3450 V up to 6300 V	40 nF
Settings	1 V steps	
Maximum voltage	6000 V	+10% -0%
Minimum Voltage	500 V	-10% +0%
Polarity	pos. / neg. / alternate	

Test voltage	Energy	Generator- impedance	Impulse Capacitor	Voltage waveform oc	Current waveform sc
0.5 kV	0.5 J	500 Ohm	4.0 uF	0.5kV 1.2/50us	1A 1.2/50us
1 kV	0.5 J	500 Ohm	1.0 uF	1kV 1.2/50us	2A 1.2/40us
2.5 kV	0.5 J	500 Ohm	120 nF	2.5kV 1.2/50us	6A 1.2/30us
5 kV	0.5 J	500 Ohm	40 nF	5kV 1.2/50us	10A 1.2/10us


MIG0603OSI Control, Measurement

Minimum time between successive shots at maximum charging voltage	8 Seconds	steps
Impulse counter	1 up to 29'999	
Trigger	auto or manual synchronisation onto the power line voltage	
Ramps	- Voltage; - Polarity, - Synchronisation	
Voltage measurement:	Accuracy	± 3%
Peak value on Display	250 up to 6'600 V	
Voltage waveform BNC output (u)	10 V equals 6'000 V	
Current measurement:	Accuracy	± 3%
Peak value on Display	125 up to 3'300 A	
Current waveform BNC output (i)	10 V equals 3'000 A	
Protocol	Peak values, Polarity, Number of shots, Angle of Synchronisation	
Limits on peak current and peak voltage for "passed - failed". The measuring range equal of current and voltage peak values	stop testprotocolnext test	

Set-up memory	Up to 23 memory places
Test sequences	the test set-ups can be linked serially
Ramps	automatic linear variation of one parameter e.g. voltage, frequency etc.
Synchronisation on different power line frequencies (CWG only)	16, ² / ₃ ;40; 50; 60
Pulse trigger	Manual or automatic
	Front panel: with Trigger button
	Rear panel: with BNC plug
Failure detection on EUT	-External Input EUT failed -Selectable limit value for impulse voltage and current for SURGE
Safety switching	Emergency stop Switch off the EMC Test and the EUT power
EUT failed detection during the test.	With accessory monitor via RS485 remote control
Test report	Printer, connected to the standard port RS 232
Control of external CDN	via RS 485 port e.g. IN-1000

1.4.4 General information to MIG control

1.4.5 Port "Auxiliary"; pin numbers

1.5 Mechanical dimensions

1.5.1 MIGxxxxOSx Tester

Туре	Dimensions [mm] I x w x h	Weight [kg]	Versions
	width x depth x height		
MIG-OS-OS1	450 x 570 x 380	28	19" Rack 4 UH
MIG0603OSI	450 x 570 x 380	28	19" Rack 8 UH

1.5.2 CDN2000-06-25

	Dimensions [mm]	Weight [kg]	Versions
Combination	width x depth x height		
CDN2000-06-25	450 x 570 x 190	26	19" Rack 4 UH

1.6 Power supply inputs

The power line input is located on the rear side of the MIG testers

Single phase voltage MIG0603OMX selects voltage 230 or 115 automatically	230 V(50 Hz)or 115 V(60 Hz)	± 10 % ± 10 %
Power consumption	Max. Operation mode < 400 VA standby < 50 VA power off < 5 VA	(230 V, 50 Hz) (115 V, 60 Hz)

MIG0603OMX generator selects the power supply voltage automatically when connected to the public power supply.

Following power cords can be ordered:

Europe (ČEE-7/VII) England (BS-1363)

Switzerland (SEV Type 12) USA (NEMA5-15P

)

1.7 Accessories, diemensions

1.7.1 Included articles, dimensions

MIG0603OSI (Article No. 103518)

Mechanical Dimensions

cm
cm
cm
kg

Included Articles

According to STL-Variante 20, STL-Version 1				
Qty	PN	Description		
1	104842	Broschure Oscillatory Wave Test System		
1	104802	Standard calibration report		
1	103191	Standard accessories pack		
1	103194	CD-UM-IN-ALL includes all User Manuals and Instruction sheets		
		of all EMC PARTNER AG sales products.		
1	104816	Power Cord 3 pole (10/13/16A)		

MIG-OS-OS1 (Article No. 103514)

Mechanical Dimensions

Unit Height:	4
Length:	57 cm
Width:	45 cm
Height:	19 cm
Net Weight:	24 kg

Included Articles

According to STL-Variante 20, STL-Version 1				
Qty	PN	Description		
1	104842	Broschure Oscillatory Wave Test System		
1	104802	Standard calibration report		
1	103191	Standard accessories pack		
1	103194	CD-UM-IN-ALL includes all User Manuals and Instruction sheets		
		of all EMC PARTNER AG sales products.		
1	104816	Power Cord 3 pole (10/13/16A)		

1.7.2 Standard accessories

Accessories to MIG0603OSI (Article No. 103518)

Qty 1	PN 102525	Description Spare fuse 5AT	Weight (kg) 0	Length (cm) 2	Width (cm) 0.5	Height (cm) 0
1	103015	Plastic pack for standard accessories 90x75mm	0	9	7.5	0
1	103027	Accessory plastic pack	0	0	0	0
1	103068	MC safety cable with protected banana plug, yello	w 0	50	0	0
1	103069	MC safety cable with protected banana plug, red	0	50	0	0
2	103112	Coaxial cable 50 Ohm SHV-BNC-SHV f/f	0	50	0	0
1	103116	MC safety test tip black 1kV, 32A	0	14	0	0
1	103117	MC safety test tip red 1kV, 32A	0	14	0	0
1	103122	Adapter SHV-BNC / Banana	0	0	0	0
1	103133	Adapter SHV-BNC / Banana, black	0	0	0	0
2	103134	HV-BNC connector m. with 1 ring loop	0	0	0	0
1	103135	HV-BNC connector short circuited	0	0	0	0
1	103167	Safety Circuit MIG AUXILIARY	0.03	5	5	1.5

Accessories to MIG-OS-OS1 (Article No. 103514)

Qty 1	PN 102525	Description Spare fuse 5AT	Weight (kg) 0	Length (cm) 2	Width (cm) 0.5	Height (cm) 0
1	103015	Plastic pack for standard accessories 90x75mm	0	9	7.5	0
1	103027	Accessory plastic pack	0	0	0	0
2	103112	Coaxial cable 50 Ohm SHV-BNC-SHV f/f	0	50	0	0
1	103116	MC safety test tip black 1kV, 32A	0	14	0	0
1	103117	MC safety test tip red 1kV, 32A	0	14	0	0
1	103122	Adapter SHV-BNC / Banana	0	0	0	0
1	103133	Adapter SHV-BNC / Banana, black	0	0	0	0
2	103134	HV-BNC connector m. with 1 ring loop	0	0	0	0
1	103135	HV-BNC connector short circuited	0	0	0	0
1	103167	Safety Circuit MIG AUXILIARY	0.03	5	5	1.5

2 Safety

The MIG0603-Oxx belongs to safety class 1

2.1 Safety standards

The MIG0603-Oxx fulfils the requirements of the safety standards IEC 1010 "Safety requirements for electrical equipment for measurement, control and laboratory use and the safety standard VDE 0104 (Safety circuits, warning lamps or connector for warning lamps). Based on EN 61010 (IEC 1010) the declaration of conformity to low voltage directive LVD 73/23/EEC (O.J. N° L77, 1973-03-26) is given.

This manual is a integral part of the MIG0603OMX Tester. The instructions contained in the manual regarding operation and the test set up are to be strictly observed.

2.2 Climatic Conditions

The MIG0603-Oxx generators contain high voltage circuits in integrated form. EMC PARTNER only guarantees a correct functioning of the MIG0603-Oxx Tester and the associated accessories, if the MIG0603-Oxx is operated in the climatic condition specified.

Temperature	15 °C to 35 °C		
Relative humidity	45 % to 75 %		
Atmospheric pressure	86 kPa to 106 kPa	(860 to 1060 mbar)	
Not influenced by:	dust or larger electro m	direct solar radiation, rain or condensate water, dust or larger electro magnetic fields as specified in the EMC compatibility chapter.	
		Т	Гаb. 2.2

The MIG0603-Oxx should be operated in a dry, clean room. If for any reason water condenses in the MIG0603-Oxx, then no MIG0603-Oxx operation should be started before the tester is dry.

It is strictly forbidden to operate the MIG0603-Oxx generators in rooms with of gas explosion risk. The high voltage of the MIG0603OMX can generate sparks, which can ignite the gas.

People with heart pacemakers should not be in the vicinity of the test set up during operation.

2.3 Precautionary measure during use

The MIG0603-Oxx Generators generate high voltage. The energy content of the SURGE impulse is high and can be dangerous with improper use. It is wise to observe the following rules:

Never touch the EUT when a test is in operation.	
Touch no connectors of connection cable when a EMC test is in operation.	
• The high voltage of the MIG0603-Oxx GENERATORS and the power on the EUT must turned off before a manipulation on the EUT is carried out.	
• For all services, e.g. check of the fuses, the power cord must first be unplugged.	
	Tab. 2.3

The MIG0603-Oxx GENERATORS must be connected to power line with a safety ground. If an Insulation transformer is involved in TRANSIENT supply the secondary side of the isolating transformer must be grounded.

2.4 Electromagnetic Compatibility

The outputs of the MIG0603OMX GENERATORS and the links between MIG0603-Oxx GENERATORS and the EUT can emit disturbances. Please consider the national PTT rules.

The Test System MIG0603-Oxx GENERATORS should not be operated near sensitive measuring and control systems.

The MIG0603-Oxx GENERATORS fulfils the following immunity requirements:

•	Electrostatic discharge	Level 4 (8 kV)	(IEC 1000-4-2)	
•	Burst EFT	Level 4 (4 kV)	(IEC 1000-4-4)	
•	SURGE	Level 3 (2 kV)	(IEC 1000-4-5)	Fig. 2.4

2.5 The manual is an integral part of the equipment. Refer to the manual.

This manual is an integral part of the MIG0603-Oxx GENERATORS. The safety rules and precautions in the manual must be observed. EMC PARTNER and their representatives are not responsible for damage to persons and equipment by not observance the safety rules and precautions in the manual.

3 Mechanical Structure

3.1 General

The MIG "Modular-Impulse-Generator" is a flexible kit system, ready to quote tailored generators for special test applications.

The basic units are discharge modules (patent pending) which can be configured in serial or parallel, to offer an optimum solution for the customer need. The use of one type of discharge module guarantees a high reliability and a high quality.

The MIG generators are compact and have an excellent value for money.

For better understanding the MIG will be divided in different parts:

- The left hand part of the MIG contain the control measurements. The left hand side of the front panel, with edged border is called the control panel.
- The right hand part contains all high voltage operation controls. Depending on MIG type the number of modules and impulse forming network change. This part is called the operation panel.

Only the control front panel is showed.

Fig.3.1

The MIG 4 height unite GENERATORS are available with different options. Not applicable to MIG 12 UH Generator:

Standard with handles as showed in Figure 3.1. This version is recommended for use in development and EMC test laboratories.

19" insert version. The handle is removed and angle brakes are fixed on both sides for fixing the MIG GENERATORS in a 19" rack.

Standard with handle in a military case. This version is recommended for outdoor EMC testing.

3.2 EMC PARTNER High Voltage Module

The basis of the MIG generators are the high voltage modules. One module includes the impulse capacitor, the electronic switches, the trigger circuit, the polarity reversal circuit and a part of the impulse shaping circuit. The modules can be connected in serial or in parallel.

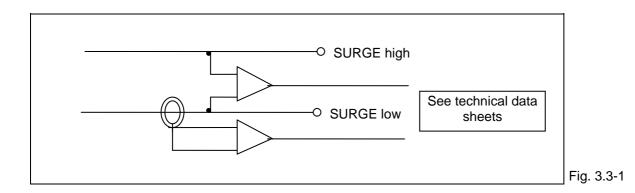



Figure: 3.2-1

3.3 Measuring Circuits CWG

The MIG0603-Oxx generator is equipped with different measurement circuits: For the CWG peak voltage and peak current are measured. The SURGE impulse voltage is measured differentially with two internally-located voltage dividers. The current is measured with a current monitor with differential amplifier. The peak values of voltage and current are memorised and shown in the display. With the two CRO outputs, the voltage and current waveform can be monitored on a oscilloscope.

For the damped oscillatory tester the output at no load is calibrated to the charging voltage. Charging voltage are equal the output voltage at open circuit.

For Magnetic Field test the field in the centre of the antenna is calibrated with the charging voltage of the tester. See diagram in the instruction manual.

4 Control Panel

4.1 Front panel of the MIG0603-Oxx

The most important elements of the front panel are:

- 1. Control panel (left part)
- 2. Operation panel (right part)
- 3. Angle bracket for the 19" rack
- 4. Ventilation holes

The controls on the front and rear panels are protected by the angle bracket (3).

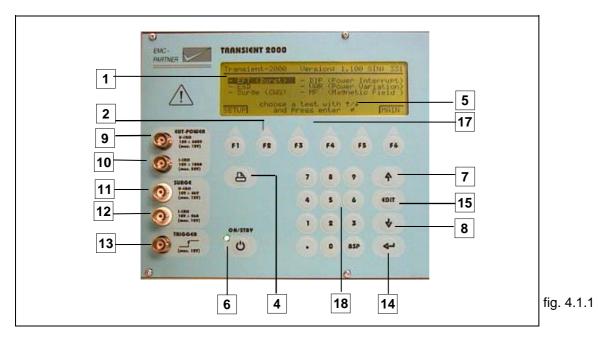
For the signalisation, the follow colours are generally used:

green	MIG0603-OxxX is connected onto the power supply. High voltage is OFF and the safety circuit is open. No Danger
red	HS can be switched on, danger
yellow	Signalisation general

Important: :

- A system reset can be carried out as follows:
- 1. Press "page up" and "1" buttons simultaneously

2. Wait until beep sounds

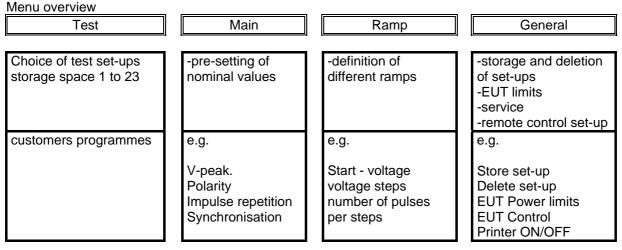

3. Press button "2" immediately

All programs stored in 1 to 15 memory space will be deleted.

4.1.1 Control part

The control of the MIG0603OMX is carried out by a microprocessor. The microprocessor controls the EMC tests, stores the inputs of the numeric input terminal, updates the display, checks whether the inputs of the operators are allowed values or not, stores the program and prepares test reports. The operator communicates with the MIG0603OMX via the numeric input terminal, the display and the soft keys.

For better understanding, the control panel elements will be explained separately from the connection panel.


4.1.1.1 The Display

All important information for the operator are permanently shown on the display during the EMC test. The large graphic display includes additionally 6 soft-keys and some hints or setting range information. (1)

4.1.1.2 Soft-keys" (2)

The program in the MIG-tester is a large program, therefore six soft-keys are provided in order to be able to move and quickly change to different menus.

Example of "Main"

4.1.1.3 Push button ON/OFF (6)

With this button, the MIG0603OMX will be set into the power OFF mode. In the turn off mode, the control and the signalise are deactivated. In this status of the MIG0603OMX, the power consumption is at a minimum of 5 W.

The LED signalise that the MIG0603OMX is connected to the public power supply. The LED turns off when the power cord is removed or the power switch on the rear side is turned of.

4.1.1.4 Push button Page up and Page down (7,8)

These two buttons make it possible to turn the pages in the MIG0603OMX menu programs.

4.1.1.5 Measuring outputs SURGE: Voltage (11) and Current (12)

Depending on MIG0603OMX generator type both measuring voltage and current are available or only current or voltage. For detailed information as accuracy, ranges, etc. see technical data On the BNC connector 11 the voltage wave shape and on the BNC connector 12 the current wave shape can be monitored.

4.1.1.6 Measuring outputs SURGE: Voltage (11) and Current (12)

During SURGE tests, voltage sequence of the SURGE waveform can be measured at the output socket 11 and the current sequence at output socket 12. The range and the accuracy of the measuring system is given in the Chapter 1.2 Technical data Section 1.2.8 measuring circuits, measuring outputs.

4.1.1.7 Trigger output for oscilloscope (13)

This output provides all the necessary trigger impulses for the different tests. The different trigger levels and the time delays are listed in Chapter 1.2 Technical data Section 1.2.9.

4.1.1.8 The Push button ENTER (14)

Numeric read in will be quit with the ENTER button.

4.1.1.9 Push-button Edit (15)

This button has a multifunctional use:

- Activate the dialogue line
- Open pull down windows

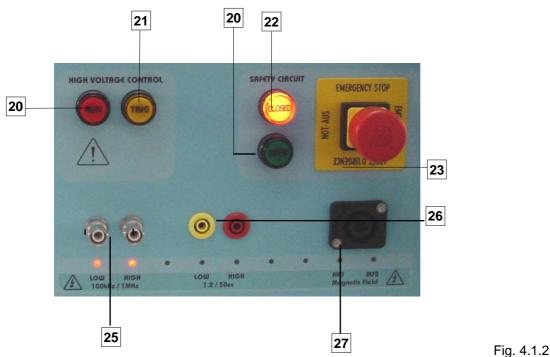
4.1.1.10 Push buttons F1 to F6 (17)

The buttons F1 to F6 are allocated to to the showed function of the display. Depending on the menu page, different functions are allocated to the four buttons.

4.1.1.11 Numeric control panel (18)

If the cursor is activated in one line of the display, then data can be input with the numeric key board. Each data input must be terminated with ENTER.

The button BSP (Backspace) enables correction of a wrong data input.


4.1.1.12 Dialogue line within the display (5)

Indicates what range can be selected or which next step must be done.

4.1.1.13 Print button (5)

At test end a summarised test report can be print out

4.1.1.14 Button High Voltage "RUN" (20)

With the "Start" button the test can be started. With the same button the high voltage test can be interrupted and the high impulse capacitor discharged

4.1.1.15 Manual Trigger (21)

When manual trigger is programmed and the tester is ready for manual trigger, this will be signalled by the LED. As soon as the signal occurs the pulse can be released.

4.1.1.16 Emergency - Stop (23)

This switch is not linked to the software. This switch is placed directly as hardware in the power supply of the MIG0603OMX generator.

4.1.1.17 Signalisation "Safety circuit open" (22)

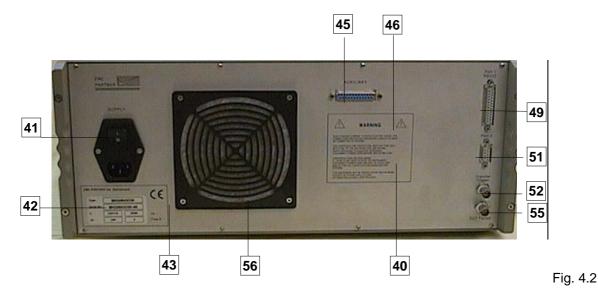
The green lamp signalises "No Danger". Only with the green lamp EUT can be changed in the test cabinet or the connection to the EUT can be changed.

4.1.1.18 Signalisation "Safety Circuit Closed" (21)

The green lamp signalises **"Danger"**. When the red lamp is "ON" the test cabinet can not be opened when additionally the high voltage is turned "ON". As long as the safety circuit is closed the red lamp is "ON". When only the high voltage is turned "OFF" and safety circuit is not open the red lamp is still "ON". When the high voltage is turned "OFF" the button 22 can be pressed to turn the lamp to green.

4.1.1.19 "CWG " high voltage output (26)

"Red" is the high voltage pin of the circuit "Yellow" is the common of the impulse circuit


4.1.1.20 "Damped oscillatory outputs" (25)

Both high voltage BNC connectors are equivalent.

4.1.1.21 "MF " high voltage output (24)

) "Red" is the high voltage pin of the circuit "Yellow" is the common of the impulse circuit

4.2 Rear Panel of the MIG0603-Oxx

^{4.2.1.1} Warnings (40)

High leakage currents. To avoid electric shock the power cord protective grounding conductor must be connected to ground.

For continued fire protection, replace fuse only with fuse of the specified type and rating. Refer servicing to qualified personnel. Disconnect power cord before replacing fuse.

Dangerous high-voltage inside. If there is any need to open the instrument, disconnect power cord and wait at least one minute for full capacitor discharge before opening.

This instrument may be protected by one or more patents or patent applications. Information available upon request.

4.2.1.2 Power supply of the MIG (41)

The MIG receives its power via power connection (41). A power switch, a fuse and a filter are build in directly at the plug The equipment can be connected to a 230 V 50 Hz or 115 V 60 Hz ac power supply. The power supply of the MIG will be automatically adapted.

Power consumption: turned on minimum < 50 W; maximum power consumption < 400 W, Standby < 5 W The fuse is rated with T 4 A / 250 V.

4.2.1.3 Type plate (42)

All important supply information is written on the type plate. Please quote the serial number and type of the equipment when requesting service or repair.

Type plate

4.2.1.4 CE mark (43)

This plate is reserved for the CE mark. The CE -mark is needed for the free movement of the goods into and within European community.

4.2.1.5 Auxiliary Port (45)

Via this port MIG accessories as Warning lamps, test cabinet, CDN filters, external safety circuit, etc. can be controlled. If no MIG accessories is connected the Auxiliary - connector must be place onto the port.

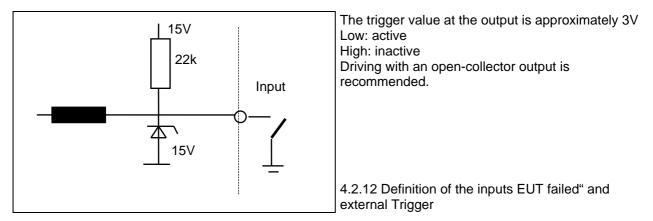
4.2.1.6 Attention, refer to manual(46)

This expression requests the operator to consult the manual in detail. Only instructed personnel are allowed to operate the MIG0603OMX.

4.2.1.7 Interface "Port 1" RS232 for printer and controller PC (49)

Via this interface a test report can be printed out on a external printer. Using the same interface port, the MIG0603OMX can be also controlled by an external PC. To configure the interface, see Chapter 13 "Remote Control".

4.2.1.8 Interface "Port 2" RS 485 for controlling external coupling networks or checking the EUT failed status(51)


Via this interface, the coupling path of external CD-networks can be controlled.

For further information, see the CD-networks manual.

With an additional EMC PARTNER module, a multiple channel EUT-failed control can be built. The control system operates during the EMC tests.

4.2.1.9 EUT Failed Input (55)

This input can be used fo a single channel the EUT during the test. EUT failed is equal to 0V.

4.2.1.10 Trigger Input (52)

This input can be used for an external trigger of surges. The time can not be defined as the trigger is related to the software clock rate and can differ between trigger 1 and trigger x.

4.2.1.11 Forced cooling of the (56)

A ventilator cools the MIG0603OMX internally. Forced cooling is necessary for the impulse forming network devices and the electronic high-voltage switch. A distance of about 20 cm must be maintained between the rear panel of the TRANSIENT 100 and any wall, and about 3 cm between the sides of the MIG0603OMX and any equipment or wall. The MIG0603OMX can be built into a 19" rack, with 3 cm side separation.

5 Preparation for Operation

5.1 Attention, Refer to Manual

This manual is an integral part of the equipment MIG0603-Oxx. The safety rules and precautions in the manual must be observed. EMC PARTNER and their representatives accept no responsibility not responsible for damages to persons and equipment as a results of non-observation of the safety rules and precautions in this manual.

Before connecting the MIG0603-Oxx to a public power line, Chapter 3 "Safety must be carefully studied.

5.2 Operators and Service Personnel

Only trained personnel should carry out EMC tests. EMC PARTNER recommends its own seminars. For small groups of maximum 10 persons EMC PARTNER AG offers the following in-house seminars in English or German at the customer's location:

- 1. EMV Introduction
- 2. EMV Standardisation
- 3. EMC "ESD" immunity test
- 4. EMC "EFT" immunity test
- 5. EMC "SURGE" immunity test
- 6. EMC "DIPS" immunity test
- 7. EMC "HARMONICS" immunity test
- 8. EMC "MAGNETIC FIELD" immunity test
- 9. EMC "CW CURRENT INJECTION" immunity test
- 10. EMC "CE-MARK" transient immunity tests
- 11. "NEMP" immunity test
- 12. "AC, DC, IMPULSE" insulation test
- 13. Flicker

5.3 Checks before operation

5.3.1 Optical verification of the MIG0603-Oxx

Before you unpack the MIG0603-Oxx, please check whether the packing is deformed or damaged. When the MIG0603-Oxx is unpacked, also check whether the tester is damaged. If you detect a damage, please inform EMC PARTNER and the shipping organisation immediately.

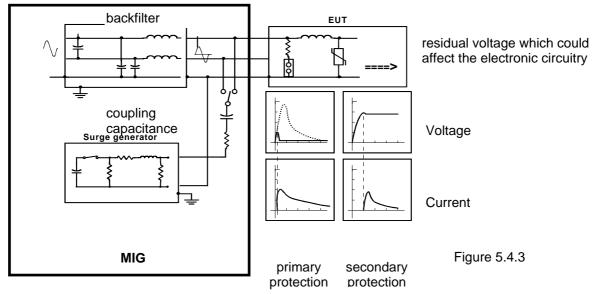
Figure: 5.3.1-1

Please keep the shipping box on stock. The must be used in case of shipment for verification or repair.

5.3.2 Power source check

On the rear panel, you will find a type plate. Please check whether the Tester has been prepared for the correct power line voltage of your public power. If the power supply voltage is different please inform EMC PARTNER AG in Switzerland, or your EMC PARTNER AG representatives.

5.3.3 Connecting the MIG0603OMX to the power line


Please use the supplied power cord for connecting the MIG0603-Oxx to your public power supply. As stated on the rear panel, the power supply must have an earth safety wire. Please check the earth connection on your power outlet before you connect and turn on the MIG0603-Oxx. The public power supply must be protected by 16 A fuse.

5.4 Hints for the test set-ups

5.4.1 Test set-up combination 1,2/50, 8/20 µs

Test set-up

What will be tested with combination wave pulses? Protection circuit for inputs, and outputs as shown in the figure below.

Superimposing SURGE pulses onto power lines is carried out using a capacitance between the tester and the power line. With the SURGE test, the effectiveness of the protection circuit will be tested. The residual voltage after the protection circuit could affect the electronic parts of the EUT.

Synchronisation with the power line frequency is important, and must be considered.

With the cable connection (current injection method), the bonding of screen and earth connections can be tested.

Safety:

The SURGE pulses can be dangerous for persons. The EUT and its cables should not be touched during SURGE EMC tests.

In case of a breakdown in the EUT, it must be remembered that high currents can flow from power supply.

5.4.2 Test set-up damped oscillatory wave

When carry out damped oscillatory wave test the follow must be considered:

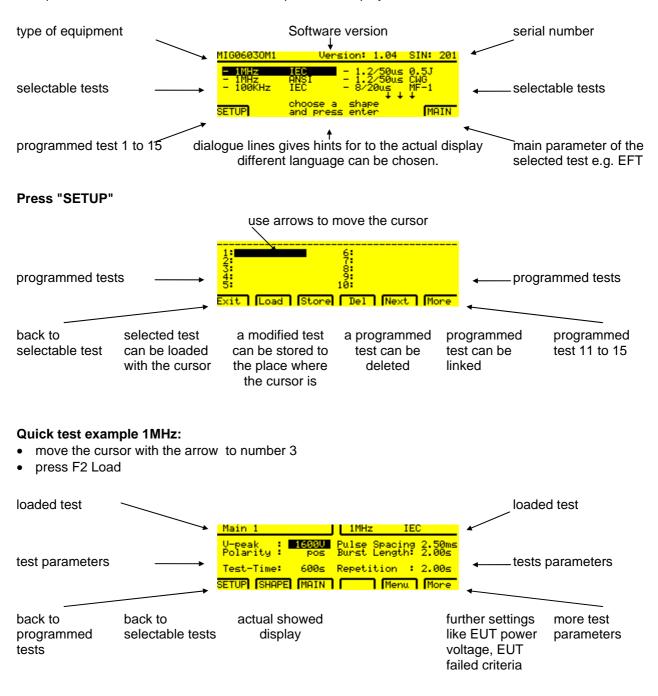
- Repetition Rate
- Amplitude
- Coupling to the test object consult product family standard
- •

Test levelsIEC

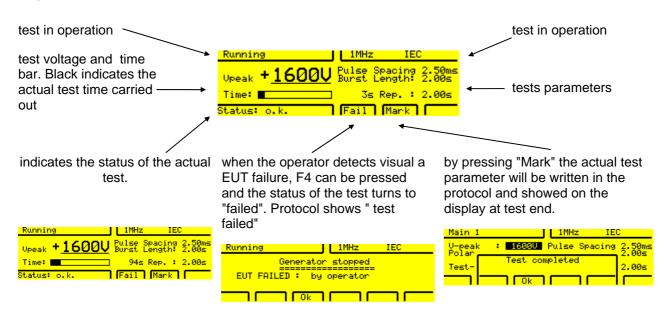
Level	Common mode kV	Differential mode kV
1	0.5	0,25
2	1	0,5
3	2 ²⁾	1
4	-	-
х	х	х
2) The value is increased to 2,5 kV for substation equipment		

5.4.3 Test set-up for 0.5 J, 500 Ω tests

Test levels IEC


6 Testing with the MIG0603-Oxx

6.1 Quickstart of the MIG0603-Oxx


When you have studied Chapter 2 "Safety" and Chapter 5 "Preparation for operation" and all instructions have been followed you have green light for a quick start. The quick start includes the most important tests using the MIG0603-Oxx.

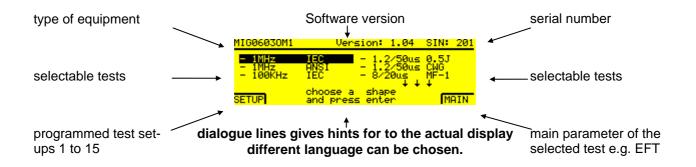
To start a set-up, the follow steps must carried out:

- Turn the power switch on the rear side to position I
- Operate the ON/STBY button on the front panel the display turns to:

press "RUN" button

When a printer is connected to the MIG tester or the MIG is controlled from a PC with GENECS the following protocol will be printed or showed on the monitor:

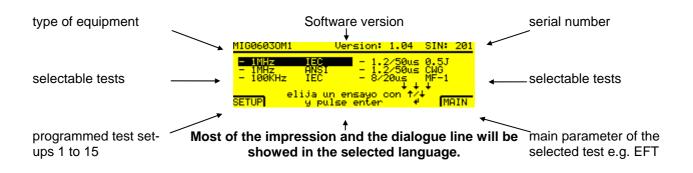
EMC-Partner AG		
	N-201 Version: 1.(04 Test : Date : 06.12.2000 Time : 20:36:50 Operator :
Burst V-peak Pulse Spacing Burst Length Repetition	: 1600V : 2.50ms : 2.00s	Polarity : pos Trigger : auto Random Pulses : off Burst Syncro : off
Test-Time		20s
Coupling	of Pulses: ->CDN	, Common Mode
Mark Mark Test 1	8 End	8s + OV 2.50ms 2.00s 18s + OV 2.50ms 2.00s 14s +1600V 2.50ms 2.00s 20s
Test Resu	ult : EUT FAIL	ED : by operator


Well that's easy isn't it ?

All other 14 programmed tests can be started and carried out on the same way. All test can be stared or stopped with the "RUN" button.

The Quickstart tests contain only a small part of the testing possibilities of the MIG0603-Oxx. In the next two sections, the additional possibilities of the MIG0603-Oxx will be explained in detail.

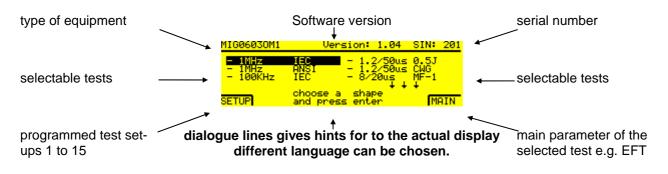
6.1.1 Selection of a language: Deutsch, Français, Italiano, Espagnol


One of the great advantages of the TRANSIENT-2000 is the language selection. The equipment are shipped with English language selected. To change the language follow the instruction below.

Press "Main" - and twice "Menu" - "UTIL" - -EDIT button

Main 1 1MHz IEC	Utility IMHz IEC	Utility
V-peak : 1600V Pulse Spacing 2.50ms Polarity : pos Burst Length: 2.00s	Language: English	Language: Neutsch
Test-Time: 20s Repetition : 2.00s		Franceis Italiano Espagnol
SETUP SHAPE MAIN More More	SETUP SHAPE MAIN Menu More	Select display language
display when "Main" has been	display after pressing twice Menu	after pressing "EDIT" button
pressed	and UTIL	

Chose the desired language (e.g. Spanish) with the arrows and quit with the ENTER button and press soft key F2 "TEST". The display "TEST" has know changed to


Further languages are possible on the GENECS software but not on the MIG tester level.

Advantage:

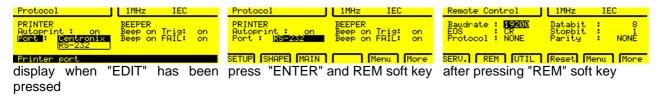
Automatically all expression and remarks on the display and the **protocol** will be written in Spanish or in the selected language.

6.1.2 Protocol and beeper possibilities

The TRANSIENT-2000 can be adapted to printer with serial or Centronics ports. The TRANSIENT-2000 default value are set at shipment: Autoprint ON, Port Centronics, Beep on Trig ON, Beep on Fail ON. The default values can be changed as follow:

Press "Main" - and twice "Menu" - "PROT"

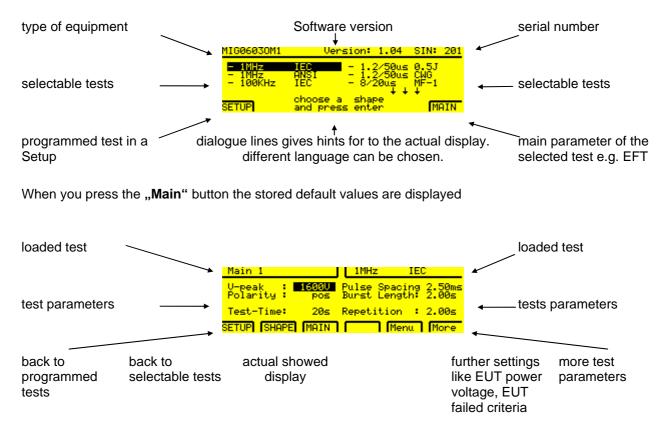
Main 1 1MHz IEC	Main 1 1MHz IEC	Protocol IMHz IEC
V-peak : <mark>16000</mark> Pulse Spacing 2.50ms Polarity : pos Burst Length: 2.00s	V-peak : 1600V Pulse Spacing 2.50ms Polarity : pos Burst Length: 2.00s	PRINTER BEEPER Autoprint : On Beep on Trig: on Port : Centronix Beep on FAIL: on
Test-Time: 20s Repetition : 2.00s	Test-Time: 20s Repetition : 2.00s	Ford : Centronix Beep on FHIL: On
SETUP SHAPE MAIN Menu More	SERV. REM UTIL Reset Menu More	PROT. EUT More More
display when "Main" has been	display after pressing twice Menu	after pressing "PROT." soft key
pressed		


Autoprint:

When Autoprint is set to OFF no protocol will be printed or send to the GENECS soft on the PC.

Port:

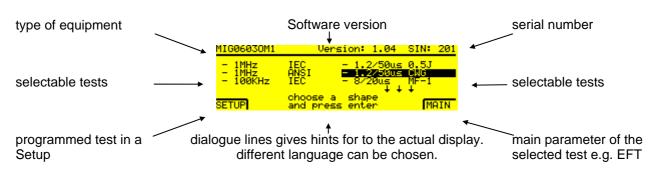
When a printer with Centronics port is used on the Port 1 of the MIG tester (rear side) the "Centronics Adapter" must be plugged. The printer can know be connected with a standard printer connection cable to the MIG tester.


When a printer with RS232 port is used remove the Centronics adapter and change the remote control of the MIG tester to serial port set-up of the printer.

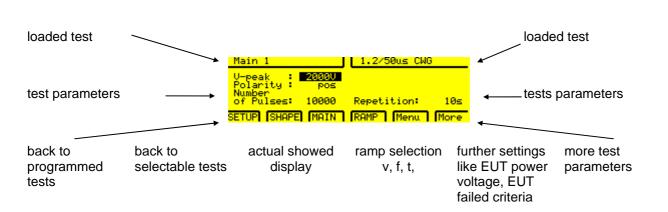
When the serial port is used to control the MIG tester from a PC select the "Remote Control parameter" as showed above corresponding to the PC serial port.

Beeper:

Turn the beep function "ON" or "OFF" as personally preferred.

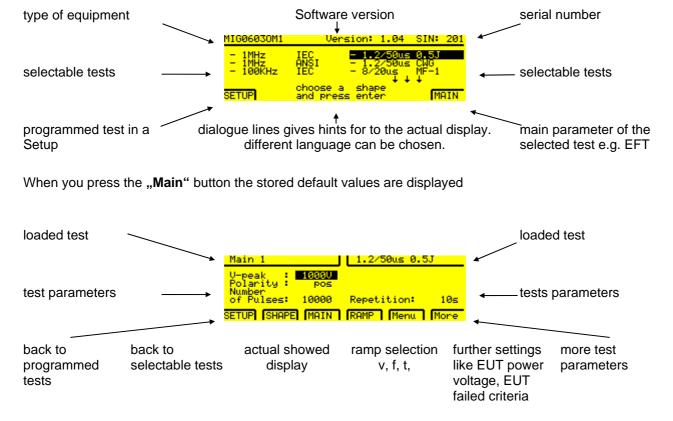


6.1.3 Damped oscillatory wave test


• Close the safety circuit (auxiliary connector placed, emergency button not pressed) the red lamp signalise "Safety Circuit closed".

With the "**RUN**" button the test with the default values will be started. Press again the "**RUN**" button to stop the test.

6.1.4 Combination Wave Test



When you press the "Main" button the stored default values are displayed

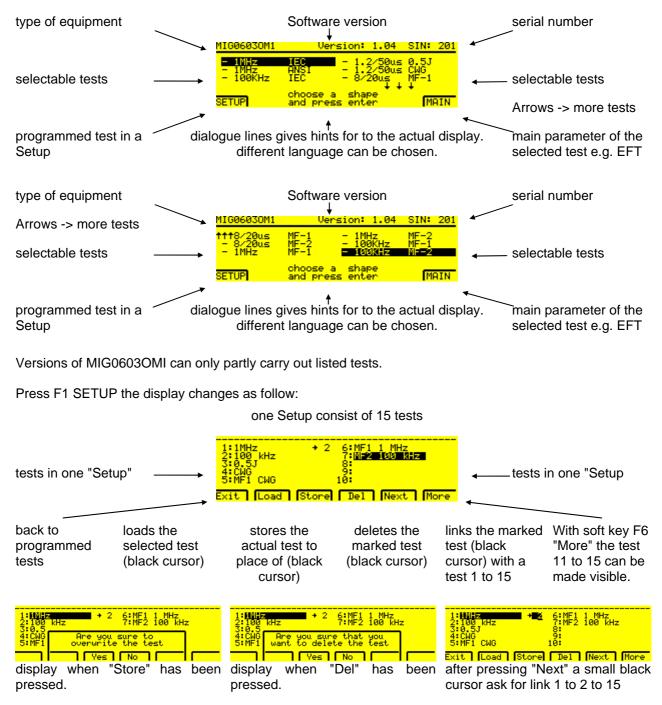
• Close the safety circuit (auxiliary connector placed, emergency button not pressed) the red lamp signalise "Safety Circuit closed".

With the **"RUN"** button the test with the default values will be started. Press again the **"RUN"** button to stop the test.

6.1.5 Tester 0.5J, 500 Ohm

 Close the safety circuit (auxiliary connector placed, emergency button not pressed) the red lamp signalise "Safety Circuit closed".

With the **"RUN"** button the test with the default values will be started. Press again the **"RUN"** button to stop the test.

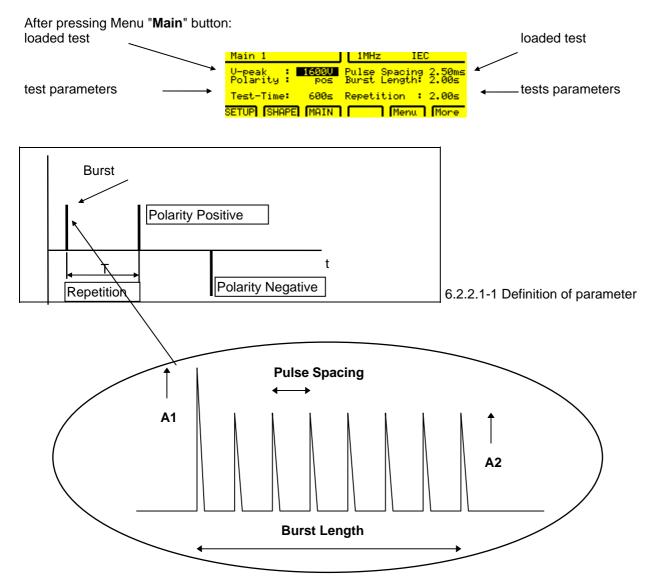

6.2 Description of different functions, Set-ups

Up to 15 storage places can be used for write your own test set-ups. In the following sections, the menu which you need to write your own set-ups will be described.

The sequence of the menu presentation corresponds with the soft key sequence on the front panel: **Test, Main, Ramp, General.**

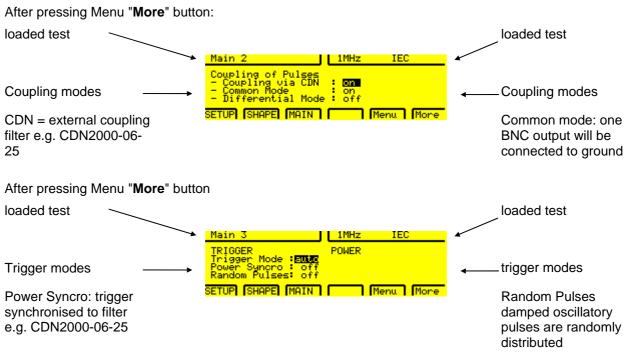
The installed set-ups can be edited or deleted.

6.2.1 Overview of programmable test with the MIG damped oscillatory testers.


Test name should be written with the GENES software. The keyboard of the PC can be used. See chapter GENECS software.

6.2.2 "Main" Setting of nominal values

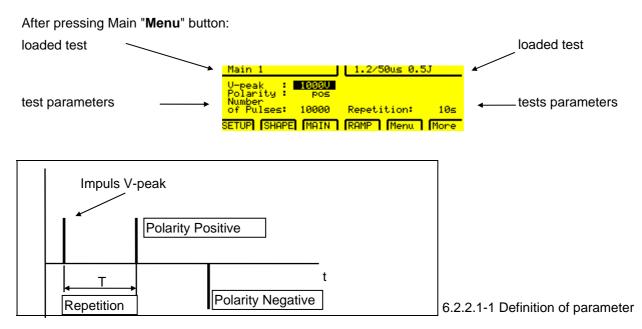
When you press the **"Test**" button a selection of installed set-ups depending of the MIG version will be visible as showed on the following pages.

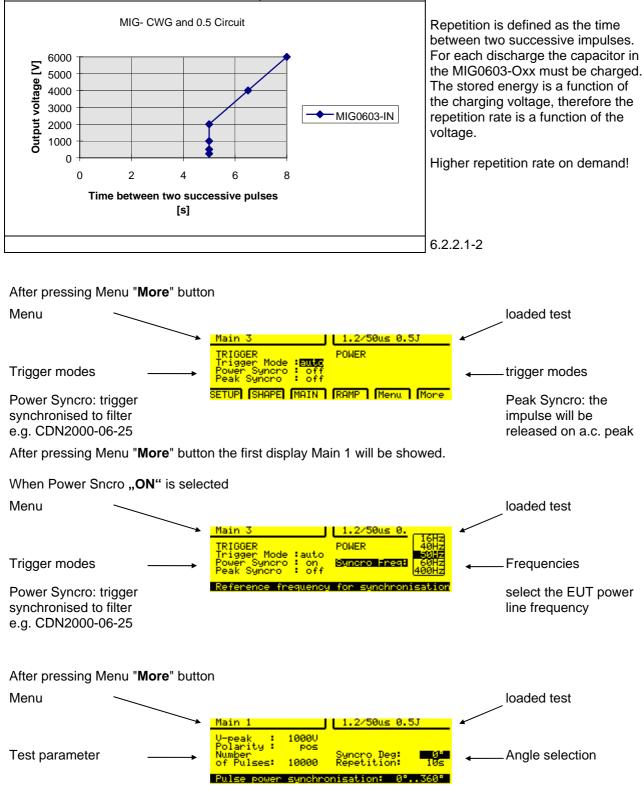

The parameter values can only be selected within the range given. If values are chosen that are above or below the given range the maximum or minimum value will be input automatically. Setting nominal values

6.2.2.1 Damped Oscillatory Wave 1 MHz Test

With pulse spacing the repetition frequency of the 1MHz or 100 kHz can be selected 1/tperiode = frequency. e.g. 400 Hz = 2.5 ms pulse spacing

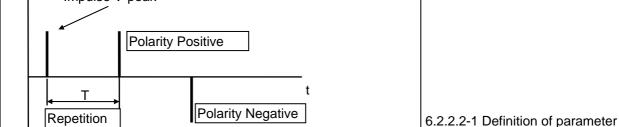
With burst length the duration of a 1MHz or 100 kHz burst can be defined.

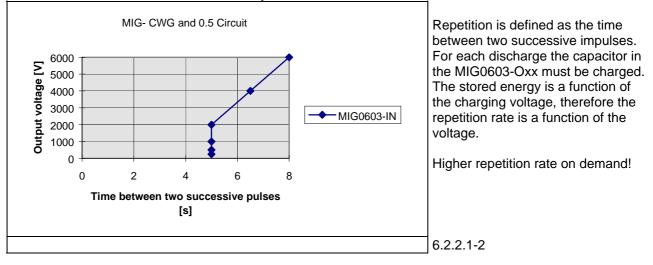



After pressing Menu "More" button the first display Main 1 will be showed.

6.2.2.2 Damped Oscillatory Wave 100 kHz Test

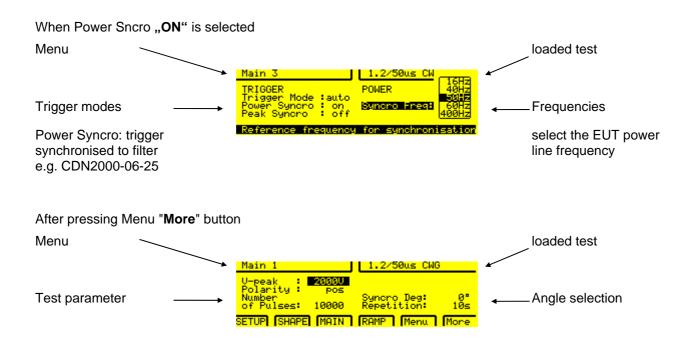
Same displays Main1 to Main3 will be showed for the 100 kHz or 1 MHz ANSI as for 1 MHz IEC

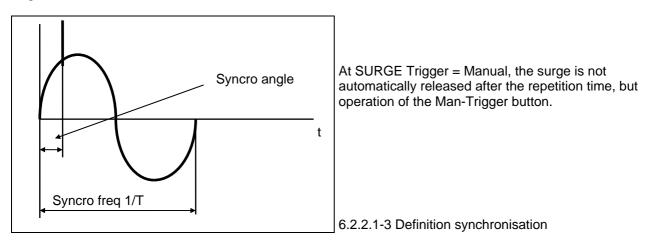

6.2.2.3 Editing 0.5 J, 500 Ω Test

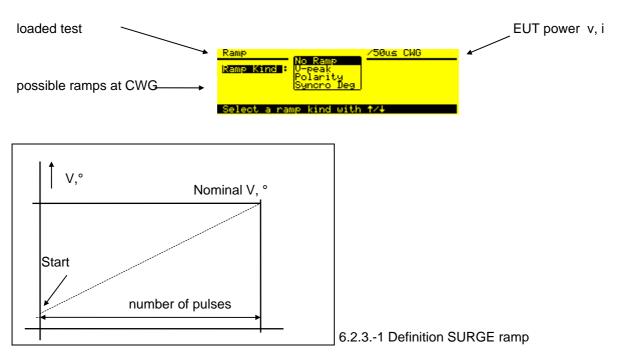


6.2.2.4 Editing Combination Wave Test

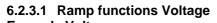
After pressing Main "Menu" button: loaded test loaded test 1.2/50us CW0 Main V-peak Polarity 20000 test parameters tests parameters of Pulses: 10000 Repetition: 10s SETUP SHAPE MAIN RAMP Menu More Impulse V-peak

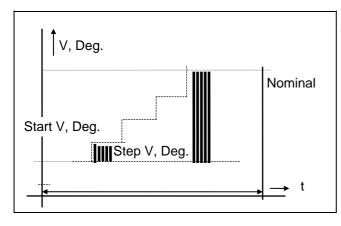

Information to the maximum allowed repetition:





After pressing Menu "More" button the first display Main 1 will be showed.

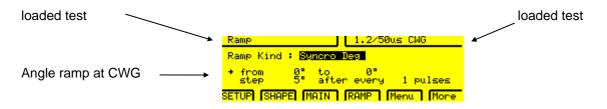

At Synchro =ON, the surges are released synchronous to the main frequency of an external coupling filter e.g. CDN2000-06-25



6.2.3 "Ramp" Automatic change of a parameter only active for SURGE and 1.2/50 0.5 J

A "Ramp" is defined as a linear change of either voltage, angle, frequency, etc. as a function of time.

The nominal voltage is selected in the menu "Main".


6.2.3-2 Definition Ramp with SURGE Impulses

6.2.3.2 Ramp functions Polarity

The polarity change "change after" number of pulses. Start is always with the polarity selected in "Main Menu".

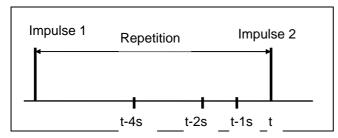
6.2.3.3 Ramp functions Synchronisation only with an external CDN activated

6.2.3.4 EUT error control

EUT error information can come from three different sources:

- 1. From EUT failed input on the rear side of the MIG testers,
- 2. From the SURGE limiter and
- 3. From the current limiter only MIG with a.c. source capabilities e.g. MIG0603IN

The error can initiate different actions:


	Acoustic signal	Remark in the report	Message on display	Abort the test
Protocol	X	X		
Next Setup	X	X	X	
Stop Run	X	X	X	X

SURGE peak limits

loaded test			EUT power v, i
	EUT-Control	1.2/50us CWG	
ramps at Variation	 Action if FAILED: Protocol	U-pk max : 29999U U-pk min : 0V I-pk max : 29999A I-pk min : 0A	
	PROT. EUT	Menu More	

Limits for SURGE peak measurements:

If selected limits are exceeded a message appears on the display. An error will be registered within a limited time. (See diagram on next page).

6.2.4.3 Time window for error message SURGE

At t-4 seconds, the charging of the SURGE capacitor for the next impulse number 2 starts.

t-2 seconds is the last possible opportunity to give an error message from impulse number 1 via the EUT failed input on the rear side of the TRANSIENT-2000.

At t-1second, the data of impulse 1 will be printed out and the error message will possibly be reset.

The error can initiate different actions:

	Acoustic signal	Remark in the report	Message on display	Abort the test
No Action	x	X		
Info Only	X	X	X	
Stop Run	X	X	X	X

6.3 High voltage "Start", "Stop""

Before you start an EMC test, you should be familiar with the following:

With "RUN" the charging of the pulse capacitor starts. At trigger Mode "Auto" the pulse will be released as soon as the selected voltage is reached (example CWG or 0.5J). For EMC tests as 1 MHz or 100 kHz the "Run Mode" is indicated by the blinking LED on the operation panel of the front. During RUN Mode, the corresponding test-LED on the operation part blinks and the corresponding coupling path is illuminated. Renewed pressing of the RUN-button stops the generator (Reset to the standby mode).

In "Standby Mode" the power to the TRANSIENT is switched on. The control is activated. No high voltage source is switched on.

With "EMERGENCY STOP" or "NOT - AUS" located on the front panel the operation of the MIG0603OMX generators can be stopped. The "EMERGENCY STOP" interrupt directly the power supply of the MIG0603OMX generator (the MIG0603OMX software are not involved).

Depending on local safety standards, an emergency stop must be installed. All operators and laboratory personnel must be able to reach the emergency stop. On the rear side of the MIG0603OMX there is an "Auxiliary Port" with two pins for an additional external Emergency switch.

The Trigger button.

The mode "Manual Trigger" has been chosen (Trigger = Man).

After the "Run" button has been pressed, the tester is started, the charging process starts. As soon the generator is ready (e.g., the impulse capacitor is charged), the LED on the trigger button is illuminated. As soon as the LED is illuminated a single pulse can be initiated. The next trigger can take place when the LED is illuminated again.

6.3.1 Safety circuit

For high voltage tests a safety circuit is a "must". The goal of the safety circuit is to prevent the operators from dangerous situation.

The green warning lamp signalise "No Danger". The safety circuit is open and the high voltage circuit of the MIG0603-Oxxgenerator can not be turned on.

As soon as the safety circuit is closed the red warning lamp signalise the "Danger". The high voltage of the MIG0603-Oxx can be turned on.

6.3.2 EUT Connections

1 MHz, 100 kHz IEC differential mode 2 x 0.5m coaxial cable with HV-BNC tips

1 MHz, 100 kHz IEC common mode

1 short circuit connector HV-BNC-sc plug to low or high

1 x 1m coax cable to the free HV-BNC plug

1MHz ANSI only common mode. The plug "high" is internally connected to ground. No external HV-BNC sc plug must be connected. 1 x 1m coax cable plug to output "low"

		-	6 6.	 -29-
-0-	No. of Contract	000		 100
		060	000	
		-	000	 2-11
-0-				
			000	 -

For all other coupling the CDN2000-06-25 must be used. SURGE (IEC 61000-4-5) on three phase power supply EFT (IEC 61000-4-4) on three phase Damped oscillatory waves (IEC 61000-4-18) on three phase power supply Damped Oscillatory waves (IEC 60255) up to four I(O lines

7 Maintenance and Servicing

7.1 Maintenance

To avoid electrical shock, be sure that the power cord is disconnected before starting maintenance work.

EMC PARTNER recommends to that the air filter of the ventilator from time to time be cleaned. The cleaning cycle depends on the environmental conditions. Place the air filter of the ventilator in soapy water for 15 minutes. After 15 minutes, the air filter must be dried before being reinstalled.

No further maintenance is necessary on the MIG0603-Oxx.

7.2 Verification of the MIG0603-Oxx by the user

A simple verification whether high voltage pulses occur at the tester outputs can be carried out using an oscilloscope of a bandwidth of 20 MHz.

7.2.1 Combination Wave Tester

Verification as specified in the Basic Standard 61000-4-5 for CWG.

- Measurement of output voltage at no load
- Measurement of short circuit current with short circuit output
- Check that voltage and current waveform are within the tolerances.
- Calculate the source impedance from the peak voltage divided by the peak current.

1. Setting "Main Menu"

V = 2000 V; Repetition 10s

2. Measuring point:

SURGE U-CRO for the voltage measurement at no load SURGE I-CRO for current measurement at short circuit (make a short circuit on the EUT power output phase to neutral on the front panel of the MIG0603OMX generator)

3. Settings at the oscilloscope

Time base 5 μ s, Vertical deflection 0.5 V / Division Definition of the wave forms and their tolerances see chapter Insulation

7.2.2 Damped Oscillatory Wave tester

Verification as specified in the Basic Standard 61000-4-18.

1. Settings "Main Menu"

V = 16000 V; Repetition 10 s

2. Measuring point:

High voltage output measurement at no load

3. Setting of the oscilloscope

Time base 10 µs, Vertical deflection 0.5 V / Division Definition of the wave forms and their tolerances see chapter energy

7.3 Verification of the MIG0603OMX at EMC PARTNER

EMC PARTNER verify the MIG0603-Oxx generators in accordance with different standards.

Before a MIG0603-Oxx is delivered, all verifications are carried out in accordance with the basic documents.

See separate test report of MIG0603-Oxx attached to this manual.

8 What must be done following failed operation

The MIG generators have many messages to assist the operator in solving possible problems with the generator, that provide information regarding incorrect operation, or to rectify an incorrect system configuration.

Basically, three different messages can be differentiated:

- Error message based on incorrect inputs
- Error message based on incorrect operation of the generator
- Warning messages

8.1.1 Errors caused by incorrect inputs "Generator not ready for run"

Message	Description
Safety circuit open	The auxiliary plug is not fitted or the emergency stop switch has been pressed.
Pulse spacing to low	The time interval between impulses is too short, the generator automatically suggests the minimum time.
No nominal defined	voltage or current
V-start > V-nominal	For voltage ramp functions. The impulse start voltage must be lower than the nominal.
Pulse rate > xxxxx pulses/rep. reduce spacing, length or repetition	For MIG generators with "Burst" function. The number of pulses exceeds the generator specification.
No coupling path defined	For MIG generators with built in CDN, no coupling path has been selected.
Repetition < 100ms	When synch mode = On, the Burst repetition must be greater than 100 ms.
To high nominal	Reduce nominal value
Repetition too low (<xxsec)< td=""><td>The minimum repetition depends on the charging voltage. Increase the repetition rate in "Main" menu.</td></xxsec)<>	The minimum repetition depends on the charging voltage. Increase the repetition rate in "Main" menu.
Wait for capacitor discharge	For MIG generators with big energy storage capacitors. Wait until the capacitors are fully discharged.
Wrong generator configuration	For MIG generators with multiple circuits. The software and hardware configurations do not match .

Generator malfunctioning	Tittle of the message followed by the information below
no voltage on hv-trafo	The voltage at the high voltage source of the MIG generator cannot be increased or is not present. Press any of the front panel buttons. Repeat the test. If there is no change contact EMC PARTNER.
High-voltage overshoot	The high voltage has exceeded a voltage limit. Press any of the front panel buttons. Repeat the test. If there is no change contact EMC PARTNER.
self firing	The pulse release occurred before the trigger signal. Press any of the front panel buttons. Repeat the test. If there is no change contact EMC PARTNER
no firing	The pulse release did not work. Press any of the front panel buttons. Repeat the test. If there is no change contact EMC PARTNER
earth switch fault	The earth switch did not work correctly. Press any of the front panel buttons. Repeat the test. If there is no change contact EMC PARTNER.
High voltage regulation fault	Regulation of the high voltage source is not functioning correctly. Press any of the front panel buttons. Repeat the test If there is no change contact EMC PARTNER
Polarity change has failed	For ICON3000 control units only
GAP distance setting has failed	For ICON3000 control units only
MAFS distance setting has failed	For ICON3000 control units only
Earth switch does not open	For ICON3000 control units only
No discharge	The generator did not trigger.

8.1.2 Failure messages based on error at the generator "Generator malfunction"

EUT FAILED: Vpk: xxxxV > xxxxV	The selected voltage limits have been exceeded during SURGE
	testing. -Check limits
	-EUT is defective.
EUT FAILED: Vpk: xxxkV <xxxkv< td=""><td>During SURGE test, the voltage has fallen below the selected</td></xxxkv<>	During SURGE test, the voltage has fallen below the selected
	voltage limits:
	-Check limits
	-EUT is defective.
EUT FAILED: lpk: xxxkA > xxxkA	The selected current limits have been exceeded during SURGE
·	test.
	-Check limits
	-EUT is defective.
EUT FAILED: Ipk: xxxkA <xxxka< td=""><td>During SURGE test, the current has fallen below the selected</td></xxxka<>	During SURGE test, the current has fallen below the selected
	limits:
	-Check limits
	-EUT is defective.
EUT FAILED: External event	The input EUT failed has been activated (grounded).
	-Check EUT failed
	-EUT is defective
EUT FAILED: by operator	The operator has pressed FAIL on the MIG front panel
Overcurrent: I-power : xxxA (>xxA)	FOR MIG generators with built in CDNs. The continuous current
,	of the EUT limit has been exceeded (AC)
Manual Trigger Timeout (>100sec)	During SURGE and with manual trigger, the high voltage will be
	switched off after 100 seconds, if no pulses have been
	released

8.1.3 Attention notice "Warning Generator stopped"

8.2 Service; Repairs

The MIG is a compact equipment and servicing or repairing the tester can only be carried out by EMC PARTNER authorised service companies.

8.3 Spare parts list

No spare parts are necessary for the MIG.

8.4 Service department of EMC PARTNER AG

EMC PARTNER AG Baselstrasse 160 CH - 4242 Laufen Switzerland Tel. ++41 61 775 20 50 Fax ++41 61 775 20 59 Email service@emc-partner.ch Web www.emc-partner.com

9 Putting out of operation

Whenever the MIG0603-Oxx is not needed remove the power cord.

Reasons for putting the MIG0603OMX out of operation:

Maintenance work Service, repair Verification by EMC PARTNER Shipment for outdoor tests

The MIG0603-Oxx is a laboratory test equipment. When the tester is not used, store it in a dry, clean dark place.

10 Packaging and Transport

10.1 Packaging

If you transport the MIG0603-Oxx, pack it in the original shipping box and packing material.

10.2 Transport

If you transport the MIG0603-Oxx for outdoor EMC tests, the military box from EMC PARTNER is recommended.

If you are transporting the MIG to an EMC PARTNER field office for repair, attach a tag to the equipment showing the instrument owner and address, the name of the person to contact about the instrument, the instrument type and the serial number.

Please use the two wite plastic to protect the front and rear of the MIG0603-Oxx generator.

Figure: 10.1-1

11 Recycling / Disposal

11.1 Information for dismantling

There is no danger involved in dismantling the MIG0603-Oxx.

11.2 Parts which can be recycled

The MIG0603-Oxx contains parts made from steel, aluminium, PVC, two-component sealing compound. The impulse capacitors are filled with non-poisonous mineral oil. The various parts can be separated and recycled.

11.3 Parts which can not be recycled

All parts in the MIG0603-Oxx can be recycled.

12 Accessories

12.1 Accessories to MIGxxxOxx System

Pos.	Product No.	Туре	Short Description	Delivery
17	TRA1Z77B- HW	Connexion 25 / 9 poles	Serial connexion 25 / 9 poles between PC and generator	from stock
18	TRA1Z67B- HW	Optical link	Serial, optical connexion between PC and TRANSIENT-1000; length 10 m	from stock

The MIG has two serial ports. Most printers on the market have parallel ports (Centronics). The remote control interpreter can be used as interface between the serial and parallel ports.

Pos.	Product No.	Туре	Short Description	Delivery
63	MIG1A92C	CDN2000-06- 25	Three phase CDN for coupling CWG, ring wave and damped oscillatory, manual operated 440V 25A to MIG0603-IN or MIG0603	1 month

13 Serial Remote Control

13.1 General

The MIG remote-control-option enables remote control of the MIG via the RS-232 serial port.

13.1.1 Technical Data of the RS 232C serial port

The V.24 serial port uses the data lines TxD and RxD for the information transfer.Baudrate:1200, 2400, 4800, 9600, 19200Databits:7, 8Parity:None, Even, OddStop:1, 2Protocol:None, RTS/CTS, XON/XOFFEnd of sequence:CR, LF, CR+LF

With the pinning below the remote control of a TRA2000 or MIG2000 generator is guaranteed.

Pinning	Signal	9 pol SubD		Signal	25 pol SubD
	TxD	Pin 3		TxD	Pin 2
	RxD	Pin 2		RxD	Pin 3
	RTS	Pin 7		RTS	Pin 4
	CTS	Pin 8		CTS	Pin 5
	DCD	Pin 1		DCD	Pin 8
	DSR	Pin 6		DSR	Pin 6
	DTR	Pin 4	- T	DTR	Pin 20
	GND	Pin 5		GND	Pin 7
	RI	Pin 9		RI	Pin 22
Standard Nullmodem	TxD	3	>>>>>>	RxD	3
	RxD	2	>>>>>>	TxD	2
	RTS + CTS	7 + 8	>>>>>>	DCD	8
	DCD	1	>>>>>>	RTS + CTS	4 + 5
	DSR + DTR	6 + 4	>>>>>>	DSR + DTR	6 + 20
	GND	5	>>>>>>	GND	7
	RxD RTS+CTS+DCD DSR + DTR	2 7 + 8 + 1 6 + 4	>>>>>>	TxD RTS+CTS+DCD DSR + DTR	2 4 + 5 + 8 6 + 20
	GND	5	>>>>>>	GND	7
EMCP 25/9 pole cable	TxD	3	>>>>>>	RxD	3
	RxD	2	>>>>>>	TxD	2
	RTS	7	>>>>>>	DCD	8
	CTS + DSR	8 + 6	>>>>>>	DTR	20
	DCD	1	>>>>>>	RTS	4
	DTR	4	>>>>>>	CTS + DSR	5 + 6
	GND	5	>>>>>>	GND	7
Min. wiring for remote	TxD	3	>>>>>>	RxD	3
		2	>>>>>>	TxD	2
	RxD	2			
control cable	RXD RTS + CTS	2 7 + 8			_

Change Communication Parameters:

To change the communication values on the generator go to the REM (Remote) menu: after power-on push \rightarrow MAIN \rightarrow MENU \rightarrow MENU \rightarrow REM. There you can change the values. Recommended parameters are:

19200 Baud, CR, no protocol, 8 databit, 1 stopbit, no parity

13.2 Organisation of MIG Remote-Control Commands

13.3 Syntax of the Commands

13.3.1 Separation signs:

Within a command, when limiting a command or ending a command-block the following characters have to be used:

- < > space after the header command
- <;> ending a command within a command block
- <EOS> Closing the command block (End Of Sequence), normaly a Carriage Return CR (→ ENTER) character

13.3.2 Commands Format:

- Integer Positive number in the range 0 to 29999, transmitted as an ASCII-string. The units and the formats correspond to inputs/outputs in the MIG-display.
- Real Floating decimal point in the format .xxx to xxx. without an exponent, transmitted as ASCII-string. The units and the format correspond to the inputs/outputs on the MIG display.
- Character Sequence of letters and numbers

13.4 Setup Commands:

Setup commands consist of the following three parts:

<set command> = <head> < > <argument>

- <head> Sequence of 2 to 4 ASCII-characters 'A'..'Z'; 'a'..'z' as start of a command. No difference is made between capital and small letters.
- <> Separation sign (Space) between <head> and <argument>
- <argument> argument, in form of a integer-, real- or a sequence of characters. No difference is made between capital and small letters.

Example: VNOM 2000 < EOS> or POL POS < EOS>

Several commands can be reduced to single commands, and be terminated with the sign *<EOS>*. Single commands are separated by semicolons:

<set command> { ; <set command> } . . . <EOS>

Example: VNOM 4000; POL NEG; REP 10 < EOS>

13.4.1 Inquire Commands

Inquire commands get the generator to transmit internal data to the system controller. The data consists of two parts:

<Inquire commands> = <head> {< >} <?>

Instead of an argument, a question mark is used in inquire commands. Several inquire commands are allowed:

Examples:

Based on the inquire command	VNOM ? <eos></eos>
the following answer can occur :	2000
Controller (PC)	POL? <eos></eos>
Generators answer	NEG
Controller (PC)	VNOM 1000;E? <<i>EOS</i>>
Generators answer	0

13.4.2 Failure messages:

input buffer ovfl .	overflow of the read buffer (>100 characters)
time-out occurred .	. Time-out at transmission end
header >4 characters .	header larger than 4 characters
unknown header .	unknown command
invalid argument .	
time-out while talk .	handshake error
no query here .	no query for this command
query expected .	
not valid in local .	this command is not allowed in local mode
not valid while run .	this command is only allowed in standby mode

Remote Control Debug Utility

The remote control debug utility makes it possible to check interfaces and user software on the system controller, the PC.

With the command DEB ON < EOS> the debug-mode will be turned on.

The display immediately shows a range of error messages and/or the contents of the reader buffer.

With DEB OFF <*EOS*>, the debug-mode will be turned off.

13.5 Remote Control Command set

Command TST (TeST)

Explanation: set or query the test mode. This command resets all test-specific parameters to the factory initialisation defaults. The reset must be at the beginning of a parameter set-up.

Arguments: characters IMP1, IMP2, IMP3....., IMP11

Example: TST IMP1 This command must be used at a generator with different wave shapes.

Command VNOM (Voltage NOMinal)

Set or query V-peak [in V]

- Argument: Integer 0..Vmax resp. 0..110 bei DIP
- Example: VNOM 1500

VNOM? Answer: 1500

Command POL (POLarity) **Explanation:** Set or query the Polarity.

Argument: Characters

POS, NEG

- Example: VNOM 1500 POL NEG
- **Command REP** (REPetition) **Explanation:** depends on the type of test:
- Argument: Integer
- Example: VNOM 1500 POL NEG REP 10

Command NBR (NumBeR) **Explanation:** depends on the type of test:

Argument: Integer 0..30000

Example: NBR 10

Command TRIG (TRIGger) **Explanation:** Set or query **Trigger Mode**.

Argument: Characters AUTO, MAN

Example: TRIG MAN

TRIG? Answer: MAN

Command SYM (SYncro Mode) **Explanation:** Set or query Syncro Mode.

Argument: Characters ON, OFF

Example: SYM ON SYF F3 SYA 180

Command SYF (SYncro Frequency) **Explanation:** Set or query Syncro Frequency (fundamental frequency).

- Argument: Characters F1 correspond 16 Hz F2 corresponds 40 Hz F3 corresponds 50 Hz F4 corresponds 60 Hz F5 corresponds 400 Hz
- Example: SYM ON SYF F3 SYA 180

Command SYA (SYncro Angle) Explanation:Set or query Syncro Angle [in degrees].

Argument:	Integer	0360
Example:	SYM ON	

Example: SYM ON SYF F3 SYA 180

Command DEF (DEFaults)

Explanation: All parameter will be resetted to the default values. This function is made automatically after the command TST or after a Power-up.

Argument: no argument

Command CIO (Coupling Impulse Output) **Explanation:** Set or query **Impulse Outputs**.

Argument:	Characters	ON, OFF
Example:	VNOM 2000 CIO ON	

These command is only useful with automatic switch to different impulse outputs.

Command CLN (Coupling path L-N)

Explanation:

Set or query the coupling path L-N at SURGE.

The coupling path is only active if the impulse output is turned off (CIO=OFF).

When more than one coupling path is chosen the coupling paths are switched in the following sequence: L-N, L-PE, N-PE

Argument: Characters

ON, OFF

Example: CLN ON; CLN? Answer: ON

These command is only useful with automatic external CDN.

Command CLP (Coupling path L-PE)

Explanation: Set or query of the coupling path **L-PE** at SURGE. The coupling path is only active if the impulse output is turned off (CIO=OFF). When more then one coupling path is selected the coupling paths are switched in the following sequence: L-N, L-PE, N-PE

Argument: Characters ON, OFF

Example: CIO OFF;CLN OFF;CLP ON

These command is only useful with automatic external CDN.

Command CNP (Coupling path N-PE)

Explanation: Set or query the coupling path **N-PE** at SURGE. The coupling path is only active if the impulse output is turned off (CIO=OFF). When more than one coupling path is chosen the coupling paths are switched in the following sequence: L-N, L-PE, N-PE

Argument: Characters ON, OFF

Example: CIO OFF;CLN OFF;CLP ON;CNP ON

These command is only useful with automatic external CDN.

Command PON (Power ON)

Explanation:

Turn on/off the **EUT power**, or query the condition of the EUT power e. g. voltage value. These command is only useful with automatic external CDN.

 Argument:
 Characters
 ON, OFF

 Example:
 SYF F3 (50Hz)

 DON ON
 (turn on the FUT neuron)

PON ON (turn on the EUT power) PON? Answer: ON PON OFF (turn off the EUT power)

Command RAK (RAmp Kind) **Explanation:** Set or query the different Ramps.

Argument:	Characters N : V : P : S :	No ramps Voltage Ramp Alternate Polarity Syncro Ramp
	3.	Syncio Kamp
	S :	Syncro Ramp

Example: RAK V

RAK? Answer: V

Command RAVS (RAmp Voltage Start) **Explanation:** depends on the test type Set or query **V-peak start** [in V].

Argument: Integer

Example: RAK V;VNOM 2000;RAVS 500;RAVS 100 (Voltage-Ramps from 500V up to 2000V in 100V steps)

Command RAVD (RAmp Voltage Delta)

Explanation: depends on the test type

Argument:	Integer
-----------	---------

Example: RAK V;VNOM 2000;RAVS 500;RATD 100 (Voltage-Ramps from 500V up to 2000V in 100V steps)

Command RASS (RAmp Syncro Start)

Set or query Syncro start [in degrees].

Argument:Integer0..360

Example: RAK S;SYM ON;SYA 360;RASS 0;RASD 10 (Syncro-Ramps from 0degree up to 360degrees in steps of 10degrees)

Command RASD (RAmp Syncro Delta) **Explanation:** depends on the test type:

Set or query $\ensuremath{\textbf{Syncro step}}$ [in degrees].

Argument: Integer 0..360

Example: RAK S;SYM ON;SYA 360;RASS 0;RASD 10 (Syncro-Ramps from 0degree up to 360degrees in steps of 10Grad)

Command RACA (RAmp Change After) **Explanation:** Set or query **Change after**.

Explanation. Set of query change an

Argument: Integer

Example:

RAK P;POL POS;**RACA 5** (Alternate Polarity, starts with positive polarity, changes after 5 pulses)

1..30000

Command EUT (EUT failed action)

Explanation: Set or query Action if EUT failed.

Argument:	Characters	OFF	No Action
	STOP	Stop R	UN
	INFO	Info on	ly

Example: IMAX 500;EUT STOP

Command VMAX (Voltage MAX) **Explanation:** Set or query EUT failed Limit, Surge Voltage max. [in V].

Argument: Integer 0..9999

Example: VMAX 600; VMIN 300; EUT INFO

Command VMIN (Voltage MIN) **Explanation:** Set or query EUT failed Limit, Surge Voltage min [in V]

Argument: Integer 0..9999

Command IMAX (current MAX) **Explanation:** Set or query EUT failed Limit, Surge Current max. [in A]

Argument: Integer 0..9999

Example: IMAX 500;IMIN 300;EUT INFO

Command IMIN (current MIN) **Explanation:** Set or query EUT failed, Surge Current min [in A].

Argument: Integer 0..9999

Command NAME (setup NAME)

Explanation: Set or query Setup term.

The set-up term is a freely defined character sequence of maximum 12 characters. The name is displayed in the test list of the MIG.

Argument: Characters max. 12 Character

Example: NAME first TEST

NAME? Answer: first TEST

Command SETN (SETup Next) **Explanation**: Set or query Next Setup.

Argument: Integer 0..23

Example: SETN 1

Command SETS (SETup Store) **Explanation:** Stores of a Setup. No query possible If a memory place is occupied, it must first be reset using the SETD command.

Argument: Integer 1..23

Example: NAME of the test;SETD 1;SETS 1

Command SETR (SETup Recall) **Explanation:** Activation of a stored set-up No query possible.

Argument: Integer 1..23

Example: SETR 5

Command SETD (SETup Delete) **Explanation:** Deletion of a stored set-up. No query possible

Argument: Integer 1..23

Example: NAME of the test; SETD 1;SETS 1

Command PRT (PRinTer) **Explanation:** Set or query Print Protocol to Port 11.

Argument: Characters ON, OFF

Example: PRT ON

Command BTR (Beep on TRigger) **Explanation:** Set or query Beep on Trigger.

Argument: Characters ON, OFF

Example: BTR? Answer: ON

Command BOF (Beep On Failed) **Explanation:** Set or query Beep on Failed

Argument: Characters ON, OFF

Example: BOF ON

Command STOP (STOP run) **Explanation:** Interrupts the Run-Mode. No query possible. Run-Mode can be recognised by the command ST?..

Argument: no argument

Example: START ST? Answer: R (Generator is in Run-Mode) STOP Answer: S (Generator is in standby-Mode)

Command STRT (STaRT run) **Explanation:** Start of the Run-Mode. No query possible. Run-Mode can be recognised by the command ST?..

Argument: no argument

Example: START ST? Answer: R (Generator is in Run-Mode) STOP ST? Answer: S (Generator is in Standby-Mode)

Command PAU (PAUse) **Explanation:** Set or query the condition pause

Argument:CharactersON, OFFExample:START
PAU ON

Command IT (Initiate Trigger)

Explanation: Trigger with the same function as the trigger button on the front panel of the MIG The trigger mode manual must be chosen (TRIG=MAN). No query possible.

Argument: n o argument

Example: TRIG MAN START ... IT (Trigger of the pulses)

Command M (Message number) **Explanation:** inquiry of Generator Error-Code. The Error-Code will be reset by the STRT command (Start). Each SURGE will also reset the error code

Argument: no argument

Answer:	Integer with the following Code:	
	0:	no error
	100:	value out of range
	101:	Safety circuit open
	103:	V-start > V-nominal
	105:	no path defined
	107:	repetition too low
	109:	printer not ready
	110:	Trafo overheat
	111:	wait for discharge
	112:	No discharge
	113:	Spacing spikes to low
	202:	generator error
	301:	EUT failed (external event)
	302:	EUT failed (V-peak > limit)
	303:	EUT failed (V-peak < limit)
	304:	EUT failed (I-peak > limit)
	305:	EUT failed (I-peak < limit)
	500:	manual trigger time out
Example	M?	
Example:		A
	Answer: 304	

Command SR (Status Register) **Explanation:** query of Generator Status Register

Argument:	no argum	nent
Answer:	Byte Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit8	 : the different Bits have the following meanings: : EUT failed : Error Code >0 (question A?) : Generator in Local Mode : Transmitting error (will be reset by the command E?) : Command error (will be reset by the command E?) : Generator in Run-Mode : New Trigger

Command ST (generator STatus) **Explanation:** query of Generator Status .

Argument:	no argument	
Answer:	Characters have the following meanings: S : Standby B : Busy (e.g. during charging process) R : Run-Mode	
Example:	START ST? Answer: R (Generator im Run-Mode) STOP ST?	

Answer: S (Generator im Standby-Mode)

Command LN (Last Number) **Explanation:** query of the last pulses

Argument:	no argument

- Answer: Integer
- Example: LN? Answer: 5

Command LV (Last Voltage) **Explanation:** query of the current voltage [in V] or. Level [in %] at ramps.

Argument: no argument

Answer: Integer

Example: LV? Answer: +2100

Command LS (Last Syncro) **Explanation:** query of the current syncro angle [in degrees] at ramps.

Argument: no argur		nent
Answer:	Integer	0360
Example:	LS? Answer:	190

Command LC (Last Coupling)

Explanation: query of the current coupling paths. Only with external automatic CDN relevant

Argument:	no argument
Answer:	Characters IMP-OUT, L-N, L-PE, N-PE
Examples	1.02

Example: LC? Answer: IMP-OUT

Command VPK (Voltage PeaK)

Explanation: query of the Surge voltage peak measurement [in V] of the last pulse.

Argument:	no argument
Answer:	Integer 05000
Example:	VPK? Answer: 2345 (positive Impulse)
or	Answer: -2100 (negative Impulse)

Command IPK (current PeaK)

Explanation: query of the Surge peak current measurement [in A] of the last pulse.

Argument:	no argument
Answer:	Integer 02500
Example:	IPK? Answer: 1345 (positive Impulse)
or	Answer: -1100 (negative Impulse)

Command ID (IDentification) **Explanation:** Inquiry of the type of equipment.

Argument:	no argument
Answer:	Characters : MIG v.vv v.vv stays for the software version
Example	

Example: ID? Answer: MIG 1.15

Command REN (REmote Enable)

Explanation: change-over into Remote Control Mode. No query possible

Argument: no argument

Command GTL (Go To Local)

Explanation: change-over into Local Mode. (manipulation from the MIG front panel) No query possible

Argument: no argument

Command E (Error number) **Explanation:** query of Remote Error-Code. The remote error-code will be reset by the command E?

Argument: no argument

Answer:	Integer 0: no ei	with the follow codes rror
	1: 2: 3: 4: 5: 8: 16: 32: 64:	Command only allowed in remote unknown command unpermissible argument no query allowed command only allowed in standby-mode timeout at transmitting end parity errror at transmitting end overflow of the input buffer other errors
		ode 1 to.5 always relate in any case to the preceding command. or-Codewill be reset after each query.
Example:	VNOM 4	4c*"6

Example: VNOM 4ç*"6 E?

Answer: 3

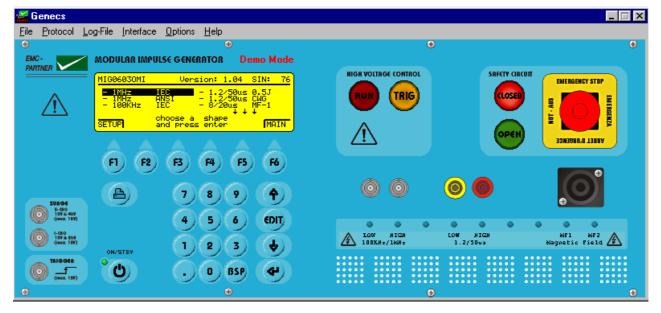
Command DEB (DEBug mode) **Explanation:** Set and query of Remote Control Debug Mode.

Argument: Characters ON, OFF

13.6 Overview MIG Commands

MIG Rem	ote Control Commands 06.03.2000 R.Casanova		
	Type of Arguments		
	Valid in "Run Mode"		
	Set allowed		
	Query allowed		
Comman	ds Short description Validin "Local mode"		
			Ļ
▼ Main Para	ameters.	••••	
TST	Test Kind (Impulsform)	.xx.	IMP1IMP9, IMPA,IMPB
VNOM	V-charge resp. V-peak or I-peak (in V or A)	.xx.	Integer
POL REP	Polarity Repetition (in sec or ms)	.xx. .xx.	Pos,Neg Integer
NBR	Number of Pulses	.xx.	Integer
TRIG	Trigger Mode (Auto/Man)	.xx.	Auto, Man
SYM	Syncro Mode (ON/OFF)	.xx.	On,Off
SYF	Syncro Frequency (F1F5)	.xx.	F1,F2,F3,
SYA	Syncro Angle (in Deg.)	.xx.	F4,F5 Integer
-			
Burst Ger	n erator only : Burst Generators: Test-Time (in sec)		Tratagram
ESF	Burst Generators: Test-Time (in sec) Burst Generators: Pulse Spacing (in ms)	.xx. .xx.	Integer Real
EBD	Burst Generators: Burst Length (in s)	.xx.	Real
MD	Burst Generators: Random Pulses	. xx .	On,Off
CLN	Burst Generators: Coupling Common-Mode	.xx.	On,Off
CLP	Burst Generators: Coupling Differential-Mode	.xx.	On,Off
o "			
	(Only with automatic Coupling filter)		
CIO CLN	Impulse Output Coupling to L1-N	.xx. .xx.	On,Off On,Off
CLP	Coupling to L1-PE		On,Off
CNP	Coupling to N-PE	.xx.	On,Off
CT 1 2	Coupling to 11 12		On,Off
CL12 CL23	Coupling to L1-L2 Coupling to L2-L3	.xx. .xx.	On,Off
CL13	Coupling to L1-L3	. xx .	On,Off
CL2N	Coupling to L2-N	.xx.	On,Off
CL3N	Coupling to L3-N	.xx.	On,Off
CL2P	Coupling to L2-P	.xx.	On,Off
CL3P	Coupling to L3-P	.xx.	On,Off
Damas	unters la (Orshau unithe such an action Orsau slim an filters)		
Power Co	ontrol: (Only with automatic Coupling filter) EUT Power ON/OFF	.xxx	On,Off
FOIN	EUT FOWEL ON/OFF		011,011
Ramps:			
RAK	Ramp Kind	.xx.	N,V,S,P,F,D
RAVS	V-peak- resp. V-ch-Start (in V)	.xx.	Integer
RAVD	V-peak-Step (in V)	.xx.	Integer
RASS	Syncro Start (in Deg.)	.xx.	Integer
RASD	Syncro Step (in Deg.)	.xx.	Integer
RACA	Change after	.xx.	Integer

EUT Cont	r ol: Action if EUT Failed	.xx.	Off,Stop,
VMAX VMIN	Failed Limit: Surge Max.Voltage (in V) Failed Limit: Surge Min.Voltage (in V)	.xx. .xx.	Info Integer Integer
IMAX IMIN	Failed Limit: Surge Max.Current (in A) Failed Limit: Surge Min.Current (in A)	.xx. .xx.	Integer Integer
Setup: NAME	Setup Name	.xx.	String[12]
SETN	Next Setup	.xx.	Integer
SETS SETR	Store Setup Recall Setup	x. x.	Integer Integer
SETD	Delete Setup	x.	Integer
General F	Parameters:		
PRT	Printer	.xx.	On,Off
BTR	Beep on Trigger	.xx.	On,Off
BOF	Beep on Failed	.xx.	On,Off
Generato	r Control:		
STOP	Stop RUN	xx	
STRT PAU	Start RUN Pause	x. .xxx	On,Off
IT	Initiate Trigger	xx	011,011
_			
	r Supervision:	3737 37	
M SR	Generator Error Message Number (Integer) Status Register (Byte)	xx.x .x.x	
ST	Actual Status of Generator (S,B,R)	.x.x	
LN	Number of last Pulse (Integer)	.x.x	
LV	Nominal Voltage of last Pulse (in V, Integer)	.x.x	
LS LC	Syncro of last Pulse (in Degree, Integer)	.x.x	
ЦС	Coupling of last Pulse	.x.x	
Measuring			
VPK	Peak Voltage of last Pulse (in V, Integer)	.x.x	
IPK	Peak Current of last Pulse (in A, Integer)	.x.x	
	Mode" Control:		
ID SIN	Identify System and Version System Identification number	XX.X	
REN	Go to Remote Mode	xx.x x.x.	
GTL	Go to Local Mode	x.	
Е	Get Communication Error Code (Byte)	xx.x	
DEB	Remote Control Debug Utility	.xx.	On,Off


13.7 Software "GENECS" for MIG Remote Control

The GENECS software delivered on a CD (the CD can be found in the cover of the manual binder), can be used to control the MIG-Tester via the RS-232 port. The MIG tester can only be controlled when the software is ordered and the entry code is available when installing GENECS.

13.7.1 Setup GENECS

See instruction on the CD. Follow the instruction of the installer program. When the GENECS is installed and the MIG-Tester via the RS232 connected the display of the MIG-Tester and the display of the GENECS must show the same figure.

13.7.2 GENECS Windows

The GENECS windows is equal the MIG tester front plate. Online the MIG tester can be remote controlled by pressing the buttons with the mouse cursor as on the real front plate.

Detailed information can be get from the "help index".

13.7.3 GENECS Library

EMC-Partner GENECS				
<u>F</u> ile	<u>P</u> rotocol	<u>L</u> ogFile	Interf	
0 p	ben			
Sa	ive Test		NSIE	
Sa	ive Setup		0 EF1	
De	elete all Tes	sts	peak larit	
Pri	int Display		st-Ti UPI (1	
Ex	iit			

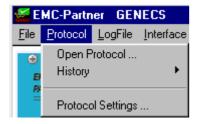
In the file pull down menu press "open" and activate Library. The Library includes test specified in the relevant basic and generic standards.

Open Setup from disk and transfer to Generator	? X Open Setup from disk and transfer to Generator	? ×
Directory History: C:\Programme\GENECS\Data\EMC Library	Directory <u>History:</u> C:\Programme\GENECS\Data\EMC Libr	rary\Basic Standards 📃 💌
Suchen in: 🦳 EMC Library 💽 🛅	Suchen in: 🔤 Basic Standards	- 🗈 📰
Basic Standards	61000-42 ESD 🗀 61000-	4-11 AC Dip and Variation
Generics Standards	🗀 61000-44 EFT 🧰 61000-	4-12 Oscillatory Wave
Product Standards	🗀 61000-45 Surge 🧰 61000-	4-16 Common Mode 0-150kF
	🗀 61000-48 Magnetic Field AC 📃 61000-	4-29 DC Dip
	61000-49 Magnetic Field Surge	
	61000-4-10 Magnetic Field Oscillatory	
	•	F
Dateiname: sup	d Datei <u>n</u> ame: ^x .sup	Load
Dateityp:	chen Dateityp: ".sup	✓ Abbrechen

with "Load" the tests are loaded into the MIG tester. During the loading process a pointer indicator shows the loading status.

Save test:

Save Set-up:


Delete all test:

Saves a test in a test place 1 to 15

Saves all 1 to 15 tests. 15 tests is equal a set-up

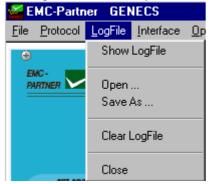
Deletes all 1 to 15 tests in the TRANSIENT-2000

13.7.4 GENECS Protocol possibilities

Open protocol: History:

Protocol setting:

Saved protocol of carried out tests can opened Last 20 tests are automatically stored and can be opened in the history pull down menu


For each test the EUT operator etc. can be defined. The header of the test report will include

the protocol setting

Protocol Settings	×
Protocol-Header	
	Enter the comments to be displayed in the new protocols Number of characters are limited due to formatting
Company :	EMC-Partner AG
Type of EUT :	
Name of Operator :	
Remarks	Use the two fields for additional remarks in the protocol header (optional)
Remarks	:

13.7.5 GENECS Log File

The log file automatically summarises the test results with the most important parameter.

💒 Genecs LogFile				
Logfile				
12.12.1999 22:56:06 HAR1000 12.12.1999 22:57:45 HAR1000	M.Luts M.Luts		T FAILED : by operator aborted	A
				v
I atorted tests will be stored.		· ····································	-lata d	×

all started tests will be stored. With "Clear Log-File all stored tests are deleted.

13.7.6 GENECS Preferences

Preferences		×
Directory		
Default Path for Setup :	C:\Programme\GENECS\Data	0.00 1001
Default Path for Protocol :	C:\Programme\GENECS\PROT	0
Editor		
Default Editor for Protocol :	NotePad.Exe	<u>©</u>
Default Editor for Log-File :	NotePad.Exe	e
Desktop		
Display Protocol	in the background	
Display Log-File	always 💌	
Language :	English	
		Cancel

Default Editor for Protocols:

Default Editor for Log-File:

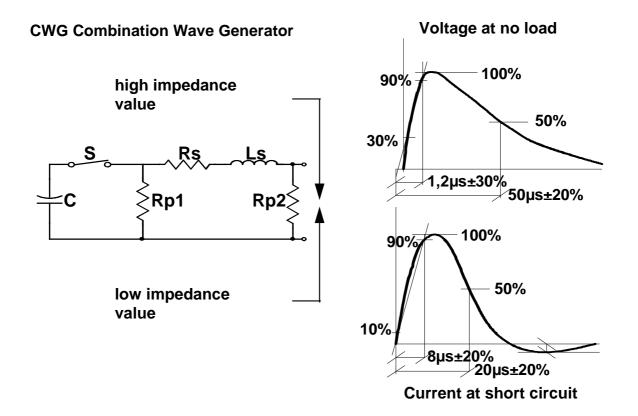
Display Log-File: it With the button ... a text program on your computer can be activated and automatically the test report will be loaded into this program. e.g. Word

With the button ... a data bank or calculation program on your computer can be activated and automatically the data will be loaded into this program. e.g. Access or Excel

When the logfile is not necessary on the monitor can be turned off. The Log file can be loaded with open logfile.

14 Appendix and Correction

14.1 Appendix


14.1.1 Definition of the wave form combination

See chapter clamping voltage tests 8/20 μ

14.1.2 Definition of the wave form energy ring wave

See chapter energy tests 10/1000 μs

14.1.3 Definition of the wave form 10/700 μs

With this information the SURGE circuit of the MIG can be easily verified.

Example: "Voltage"

- choose 1 kV charging voltage

- measure the no load voltage at the generator output. Check whether the wave-form is within the tolerances or not.

Surge voltage front time T1=1.2 µs ±30%	0.84 - 1.56 µs
Time to half value T2= 50 μ s ±20%	40 - 60 µs
measure Umax.	

Example "Current" - choose 1 kV charging voltage - measure the short circuit current at the generator output. Check whether the waveform is within the tolerances or not.

Surge current front time T1= 8 µs ±20%	6.4 - 9.6 µs
Time to half value T2=20 µs ±20%	16 - 22 µs
measure Imax	

Check the source impedance:

 $\text{Umax} / \text{Imax} = 2 \text{ Ohm } \pm 10\%$

14.2 Correction

14.2.1 Declaration of conformity to the EMC directive 89/336/EEC

see appendix at the end of this documents.

14.2.2 Declaration of conformity to the LV directive 93/68/EEC

see appendix at the end of this documents.

14.2.3 Declaration of conformity to the Basic Standards

see appendix at the end of this documents.

15 Glossary

Wherever possible, definitions in accordance with IEC 50 (IEV 161) are used.

EUT	Equipment under Test
EST	French abbreviation of EUT
EMV = EMC = CEM	Electro Magnetic Compatibility German: Elektromagnetische Verträglichkeit French: compatibilité elctromagnetique
Hybrid pulse	Voltage at no load 1.2 / 50 μs and current at short circuit 8 / 20 $\mu s.$
CWG	Definition in IEC 1000-4-5 used for Surge Tester Combination wave generator.
Coupling network	Electric circuit for transferring energy with low losses from one circuit into another circuit.
Decoupling network	Electric circuit to prevent transmitting energy from one circuit into another circuit.
CDN coupling decoupling network	Consist of a coupling and a de-coupling network.
(single or three phase unit)	
EFT	Electric Fast Transient
	(switched inductance)
ESD	Electric Static Discharge
SURGE	Transients with high energy content with relatively low frequency content
	as produced by lightning and switching of power lines.
DIP	Short voltage interruption or short voltage drop
IEC	International standardisation organisation for electronic technology
VARIAC	Voltage variable transformer
SPIKE	One pulse of the burst
CRO	oscilloscope
HV	High Voltage
rms.	root mean square; effective value
Insulation test	The voltage waveform is relevant
Energy test	The current waveform is relevant
Combination test	The voltage and current waveform is relevant

Used symbols:

	Direct current
\sim	Alternating current
3⁄~	Three phase alternating current
	Earth (ground) terminal
	Protective conductor terminal IEC 417, No. 5019
\bigwedge	Caution, risk of electric shock ISO 3864, No. B.3.6
	Caution (refer to accompanying documents) ISO 3864, No. B.3.1

0.5 J, 500 Ω test Hints to test set-up	42
$0.5J 500 \Omega$ Test	42
Quickstart	48
0.5J, 500 Ω test	
Editing Setups	51

1

1.2/50 μs 0.5J Introduction	12
1.5/50, 0.5J, 500 Ω Technical Data	20
rechinical Data	20

A

56 28, 39
36
21

С

CDN2000-06-25 CE mark Check before operation Clamping Voltage Test	13 36 39
Repetition Climatic Condition	52, 53 27
Combination test	21
Editing Setups	53
Combination Wave Generator	
Technical Data	19
Combination Wave Test	
Introduction	9
Quickstart	47
Combination Wave Tester	
Verification by the customer	61
Combination wave testers CWG	15
Command BOF	84
Command BTR	84
Command CIO	80
Command CLN	80
Command CLP	80
Command CNP	81
Command DEB	89
Command DEF	80
Command E	89
Command EUT	82
Command GTL	89
Command ID	88
Command IMAX	83
Command IMIN	83
Command IPK	88
Command IT	85

Command LC	88
Command LN	87
Command LS	87
Command LV	87
Command M	86
Command NAME	83
Command NBR	78
Command PAU	85
Command POL	78
Command PON	81
Command PRT	84
Command RACA	82
Command RAK	81
Command RASD	82
Command RASS	82
Command RAVD	82
Command RAVS	81
Command REN	89
Command REP	78
Command SETD	84
Command SETN	83
Command SETR	84
Command SETS	84
Command SR	86
Command ST	87
Command STOP	85
Command STRT	85
Command SYA	79
Command SYF	79
Command SYM	79
Command TRIG	79
Command TST	78
Command VMAX	83
Command VMIN	83
Command VNOM	78
Command VPK	88
Connection to EUT	00
CWG	59
Damped oscillatory Wave	59
Control	00
Indication and LED colours	31
Rear panel of the MIG	35
Technical Data	21
Control panel	21
Control part	32
Front panel	31
Coupling network	101
CWG	101
CWG output to connect EUT	35
	00

D

Damped oscillatory outputs	35
Damped oscillatory Wave 100 kHz	
Editing Setups	51
Damped oscillatory Wave 1MHz	
Editing Setups	50
Damped oscillatory wave test	
Quickstart	47
Damped oscillatory wave tester	
Verification by the customer	61
Decoupling network	101
delivered standard set-ups	43
Description of a module	30

MIG-OS-OS1_MIG0603OS1_MIG0603OSI Modular Impulse Generator

Display (1)	32
Display messages	63
down (15)	33

E

Electromagnetic Compatibility	28
EMC	101
Emergency - Stop	34
Emergency Stop	58
ENTER (14)	33
Errors caused by incorrect inputs	63
EUT	101
EUT failed control	56
Failed Input	37
External Event	65
External Trigger Input	37

F

Forced coolin	q
---------------	---

H

58
64
64
34

Ι

IEC V	
1MHz, 100 kHz	
Technical Data	17
Important	
System Reset	31
Interface	
PC	36
Printer	36

M

Maintenance	61
Manual Trigger (20)	34
Measuring Circuit	30
Measuring outputs	33
Mechanical dimensions	22
CDN2000-06-25	22
MIGxxxxOSxx Tester	22
Mechanical structure	
19" Insert version	29
Standard	29
With military box	29
Menu	
Overview	32
Ramp	55
Menu Main	50
MF output to connect MF antenna	35
MF Tester	
Verification by the customer	61
MIG Tester for varistors and gaze arresters	14

MIG Tester for X,Y capacitors	15
MIG0603OS1	13
MIG0603OSI	13
MIG-OS-OS1	13

N

Neutral > 50 V No Firing No High Voltage No Path Defined Numeric control panel (18) Numeric control panel (18)	65 64 63 33 33
Numeric control panel (18)	33

0

Operational Conditions	27
Overview Damped Oscillatory Tester	13
Overview MIG Clamping Voltage Tester	14
Overview MIG Tester	14
Overview Standard MIG Tester	14

P

37

Packaging and shipment Page up Page down (7,8) Polarity	69 33
Ramp functions	56
Power line voltage, power consumption	22
Power supply of the MIG	36
PUlse Rate> xxx	63
Pulse spacing to low	63
Push button ON/OFF (6)	33
Push buttons F1 to F4 (17)	33
Push buttons F1 to F6 (17)	33
Putting out of operation	67

Q

Quickstart	
------------	--

43

R

Ramp (4) Recycling/Disposal Remote Control Commands Remote Control Debug Utility Remote ports	55 71 90 77
CDN (51)	36
Remote-Control Commands	76
Rep. Too Low	63
Repetition < 100 ms	63
RS 232C port	75

S

Safety	
Precautionary measure	28
Standards	27

MIG-OS-OS1_MIG0603OS1_MIG0603OSI Modular Impulse Generator

Safety circuit Safety circuit	34
arrangement	58
Safety circuit open	34
Safety circuit open	63
self Firing	64
Seminars	39
Service, Repair	66
Standby Mode	58
SURGE	101
error message	57
Synchronisation	54
SURGE Measuring outputs	33
Symbols	102
Synchronisation	
Ramp functions	56

T

Test	101
Test set-up	42
Test set-up combination	

Hints to test set-up	41
Timeout	65
Trigger output for oscilloscope (13)	33
Type plate	36

V

Verification by EMC PARTNER	62
Voltage Ramp functions	55
Voltage damped oscillatory wave tester V-start > V-nominal	8 63

W

Wait for capacitor discharge	63
Warnings	35
Wrong generator configuration	63

Declaration of Conformity to Standards

The Tester

Type: MIGxxx-Osx, S/N > 200

complies with the following standards:

MIG-OS-OS1IEC 61000-12 damped oscillatory partMIG0603OSIIEC 61000-4-9, -12 damped oscillatory part, IEC 60255-4

Laufen, 02. February 2004

EMC PARTNER AG

14

M. Lutz Managing Director

EMC PARTNER AG

R. Henz Manager Service Department

Appendix to 14.2.3 Conformity declaration with basic standards

Manufacturer Declaration Of Conformity EMC

Directive 89/336/EWG with table VII 2004/108/EG

The Tester

Type: MIGxxx-OSx, S/N > 200

has been tested in accordance with the following standards:

harmonised: EN 61000-6-3: 2007 EN 61326: 2006

international IEC 61000-6-3 IEC 61326-1

Fulfilling the directions of the EMC - Directive 89/336/EWG and with table VII 2004/108/EG

EMC PARTNER authorised representative established within the EC Community

H+H High Voltage Technology GmbH Im kurzen Busch 15 DE - 58640 Iserlohn

Laufen: 04. August 2009

EMC PARTNER AG

M. Lutz Managing Director

EMC PARTNER AG

R. Henz Manager Service Department

Appendix to 14.2.2 K Conformity declaration with the EMC directive

Manufacturer Declaration Of Conformity LV

Directive 73/23/EWG; with table VI 2006/95/EG

The EMC Tester

Type: MIGxxx-OSx, S/N > 200

is designed and manufactured complying with the following harmonised standards:

Harmonised: EN 61010-1: 2001

international IEC 61010-1

in accordance with the regulation of LV - directive of the members states 73/23/EWG and with table VI 2006/95/EG

EMC PARTNER authorised representative established within the EC Community

H+H High Voltage Technology GmbH Im kurzen Busch 15 DE - 58640 Iserlohn

Laufen, 05.August 2009

EMC PARTNER AG

M. Lutz Managing Director

EMC PARTNER AG

R. Henz Manager Service Department

Appendix to 14.2.2 Conformity declaration with Low Voltage Directive 93/68/EEC and with table VI 2006/95/EG